Commit 7d9c6260 authored by 李煜's avatar 李煜

code update

parent c007ed3f
...@@ -540,7 +540,7 @@ if __name__ == '__main__': ...@@ -540,7 +540,7 @@ if __name__ == '__main__':
ttm_factor_sets, balance_sets = get_basic_growth_data(date_index) ttm_factor_sets, balance_sets = get_basic_growth_data(date_index)
growth_sets = pd.merge(ttm_factor_sets, balance_sets, on='symbol') growth_sets = pd.merge(ttm_factor_sets, balance_sets, on='symbol')
cache_data.set_cache(session1, date_index, growth_sets.to_json(orient='records')) cache_data.set_cache(session1, date_index, growth_sets.to_json(orient='records'))
factor_growth.factor_calculate(date_index=date_index, session=session1) factor_growth.factor_calculate.delay(date_index=date_index, session=session1)
time1 = time.time() time1 = time.time()
print('growth_cal_time:{}'.format(time1 - start_time)) print('growth_cal_time:{}'.format(time1 - start_time))
...@@ -550,7 +550,7 @@ if __name__ == '__main__': ...@@ -550,7 +550,7 @@ if __name__ == '__main__':
valuation_sets = pd.merge(valuation_sets, ttm_factor_sets, on='symbol') valuation_sets = pd.merge(valuation_sets, ttm_factor_sets, on='symbol')
valuation_sets = pd.merge(valuation_sets, cash_flow_sets, on='symbol') valuation_sets = pd.merge(valuation_sets, cash_flow_sets, on='symbol')
cache_data.set_cache(session2, date_index, valuation_sets.to_json(orient='records')) cache_data.set_cache(session2, date_index, valuation_sets.to_json(orient='records'))
historical_value.factor_calculate(date_index=date_index, session=session2) historical_value.factor_calculate.delay(date_index=date_index, session=session2)
time2 = time.time() time2 = time.time()
print('history_cal_time:{}'.format(time2 - time1)) print('history_cal_time:{}'.format(time2 - time1))
...@@ -561,32 +561,32 @@ if __name__ == '__main__': ...@@ -561,32 +561,32 @@ if __name__ == '__main__':
valuation_sets = pd.merge(valuation_sets, cash_flow_sets, on='symbol') valuation_sets = pd.merge(valuation_sets, cash_flow_sets, on='symbol')
valuation_sets = pd.merge(valuation_sets, balance_sets, on='symbol') valuation_sets = pd.merge(valuation_sets, balance_sets, on='symbol')
cache_data.set_cache(session3, date_index, valuation_sets.to_json(orient='records')) cache_data.set_cache(session3, date_index, valuation_sets.to_json(orient='records'))
factor_per_share_indicators.factor_calculate(date_index=date_index, session=session3) factor_per_share_indicators.factor_calculate.delay(date_index=date_index, session=session3)
time3 = time.time() time3 = time.time()
print('per_share_cal_time:{}'.format(time3 - time2)) print('per_share_cal_time:{}'.format(time3 - time2))
# cash flow # cash flow
tp_cash_flow, ttm_cash_flow_sets = get_basic_cash_flow(date_index) tp_cash_flow, ttm_cash_flow_sets = get_basic_cash_flow(date_index)
cache_data.set_cache(session4 + "1", date_index, tp_cash_flow.to_json(orient='records')) cache_data.set_cache(session4 + date_index + "1", date_index, tp_cash_flow.to_json(orient='records'))
cache_data.set_cache(session4 + "2", date_index, ttm_cash_flow_sets.to_json(orient='records')) cache_data.set_cache(session4 + date_index + "2", date_index, ttm_cash_flow_sets.to_json(orient='records'))
factor_cash_flow.factor_calculate(date_index=date_index, session=session4) factor_cash_flow.factor_calculate.delay(date_index=date_index, session=session4)
time4 = time.time() time4 = time.time()
print('cash_flow_cal_time:{}'.format(time4 - time3)) print('cash_flow_cal_time:{}'.format(time4 - time3))
# constrain # constrain
balance_sets, ttm_factors_sets = get_basic_constrain(date_index) balance_sets, ttm_factors_sets = get_basic_constrain(date_index)
cache_data.set_cache(session5 + '1', date_index, balance_sets.to_json(orient='records')) cache_data.set_cache(session5 + date_index + '1', date_index, balance_sets.to_json(orient='records'))
cache_data.set_cache(session5 + '2', date_index, ttm_factors_sets.to_json(orient='records')) cache_data.set_cache(session5 + date_index + '2', date_index, ttm_factors_sets.to_json(orient='records'))
factor_constrain.factor_calculate(date_index=date_index, session=session5) factor_constrain.factor_calculate.delay(date_index=date_index, session=session5)
time5 = time.time() time5 = time.time()
print('constrain_cal_time:{}'.format(time5 - time4)) print('constrain_cal_time:{}'.format(time5 - time4))
# earning # earning
# tp_earning, ttm_earning_5y, ttm_earning = get_basic_earning(date_index) # tp_earning, ttm_earning_5y, ttm_earning = get_basic_earning(date_index)
# cache_data.set_cache(session6 + "1", date_index, tp_earning.to_json(orient='records')) # cache_data.set_cache(session6 + date_index + "1", date_index, tp_earning.to_json(orient='records'))
# cache_data.set_cache(session6 + "2", date_index, ttm_earning_5y.to_json(orient='records')) # cache_data.set_cache(session6 + date_index + "2", date_index, ttm_earning_5y.to_json(orient='records'))
# cache_data.set_cache(session6 + "3", date_index, ttm_earning.to_json(orient='records')) # cache_data.set_cache(session6 + date_index + "3", date_index, ttm_earning.to_json(orient='records'))
# factor_earning.factor_calculate(date_index=date_index, session=session6) # factor_earning.factor_calculate.delay(date_index=date_index, session=session6)
# time6 = time.time() # time6 = time.time()
# print('earning_cal_time:{}'.format(time6 - time5)) # print('earning_cal_time:{}'.format(time6 - time5))
print('---------------------->') print('---------------------->')
...@@ -13,4 +13,5 @@ app = create_app('factor', ['factor.factor_growth', ...@@ -13,4 +13,5 @@ app = create_app('factor', ['factor.factor_growth',
'factor.historical_value', 'factor.historical_value',
'factor.factor_cash_flow', 'factor.factor_cash_flow',
'factor.factor_constrain', 'factor.factor_constrain',
'factor.factor_earning']) 'factor.factor_earning',
'factor.factor_per_share_indicators'])
...@@ -8,8 +8,7 @@ import numpy as np ...@@ -8,8 +8,7 @@ import numpy as np
from pandas.io.json import json_normalize from pandas.io.json import json_normalize
from factor.ttm_fundamental import * from factor.ttm_fundamental import *
from factor.factor_base import FactorBase from factor.factor_base import FactorBase
from vision.fm.signletion_engine import * from factor.utillities.calc_tools import CalcTools
from vision.utillities.calc_tools import CalcTools
from ultron.cluster.invoke.cache_data import cache_data from ultron.cluster.invoke.cache_data import cache_data
...@@ -272,8 +271,8 @@ def factor_calculate(**kwargs): ...@@ -272,8 +271,8 @@ def factor_calculate(**kwargs):
session = kwargs['session'] session = kwargs['session']
cash_flow = FactorCashFlow('factor_cash_flow') # 注意, 这里的name要与client中新建table时的name一致, 不然回报错 cash_flow = FactorCashFlow('factor_cash_flow') # 注意, 这里的name要与client中新建table时的name一致, 不然回报错
content1 = cache_data.get_cache(session + "1", date_index) content1 = cache_data.get_cache(session + date_index + "1", date_index)
content2 = cache_data.get_cache(session + "2", date_index) content2 = cache_data.get_cache(session + date_index + "2", date_index)
tp_cash_flow = json_normalize(json.loads(str(content1, encoding='utf8'))) tp_cash_flow = json_normalize(json.loads(str(content1, encoding='utf8')))
ttm_factor_sets = json_normalize(json.loads(str(content2, encoding='utf8'))) ttm_factor_sets = json_normalize(json.loads(str(content2, encoding='utf8')))
tp_cash_flow.set_index('symbol', inplace=True) tp_cash_flow.set_index('symbol', inplace=True)
......
...@@ -9,8 +9,7 @@ from pandas.io.json import json_normalize ...@@ -9,8 +9,7 @@ from pandas.io.json import json_normalize
from factor import app from factor import app
from factor.factor_base import FactorBase from factor.factor_base import FactorBase
from factor.ttm_fundamental import * from factor.ttm_fundamental import *
from vision.fm.signletion_engine import * from factor.utillities.calc_tools import CalcTools
from vision.utillities.calc_tools import CalcTools
from ultron.cluster.invoke.cache_data import cache_data from ultron.cluster.invoke.cache_data import cache_data
...@@ -190,8 +189,8 @@ def factor_calculate(**kwargs): ...@@ -190,8 +189,8 @@ def factor_calculate(**kwargs):
date_index = kwargs['date_index'] date_index = kwargs['date_index']
session = kwargs['session'] session = kwargs['session']
constrain = FactorConstrain('factor_constrain') # 注意, 这里的name要与client中新建table时的name一致, 不然回报错 constrain = FactorConstrain('factor_constrain') # 注意, 这里的name要与client中新建table时的name一致, 不然回报错
content1 = cache_data.get_cache(session + '1', date_index) content1 = cache_data.get_cache(session + date_index + '1', date_index)
content2 = cache_data.get_cache(session + '2', date_index) content2 = cache_data.get_cache(session + date_index + '2', date_index)
balance_sets = json_normalize(json.loads(str(content1, encoding='utf8'))) balance_sets = json_normalize(json.loads(str(content1, encoding='utf8')))
ttm_factors_sets = json_normalize(json.loads(str(content2, encoding='utf8'))) ttm_factors_sets = json_normalize(json.loads(str(content2, encoding='utf8')))
balance_sets.set_index('symbol', inplace=True) balance_sets.set_index('symbol', inplace=True)
......
...@@ -14,8 +14,7 @@ from factor import app ...@@ -14,8 +14,7 @@ from factor import app
import numpy as np import numpy as np
from factor.ttm_fundamental import * from factor.ttm_fundamental import *
from factor.factor_base import FactorBase from factor.factor_base import FactorBase
from vision.fm.signletion_engine import * from factor.utillities.calc_tools import CalcTools
from vision.utillities.calc_tools import CalcTools
from pandas.io.json import json_normalize from pandas.io.json import json_normalize
from ultron.cluster.invoke.cache_data import cache_data from ultron.cluster.invoke.cache_data import cache_data
...@@ -600,9 +599,9 @@ def factor_calculate(**kwargs): ...@@ -600,9 +599,9 @@ def factor_calculate(**kwargs):
date_index = kwargs['date_index'] date_index = kwargs['date_index']
session = kwargs['session'] session = kwargs['session']
earning = FactorEarning('factor_earning') # 注意, 这里的name要与client中新建table时的name一致, 不然回报错 earning = FactorEarning('factor_earning') # 注意, 这里的name要与client中新建table时的name一致, 不然回报错
content1 = cache_data.get_cache(session + "1", date_index) content1 = cache_data.get_cache(session + date_index + "1", date_index)
content2 = cache_data.get_cache(session + "2", date_index) content2 = cache_data.get_cache(session + date_index + "2", date_index)
content3 = cache_data.get_cache(session + "3", date_index) content3 = cache_data.get_cache(session + date_index + "3", date_index)
tp_earning = json_normalize(json.loads(str(content1, encoding='utf8'))) tp_earning = json_normalize(json.loads(str(content1, encoding='utf8')))
ttm_earning_5y = json_normalize(json.loads(str(content2, encoding='utf8'))) ttm_earning_5y = json_normalize(json.loads(str(content2, encoding='utf8')))
ttm_earning = json_normalize(json.loads(str(content3, encoding='utf8'))) ttm_earning = json_normalize(json.loads(str(content3, encoding='utf8')))
......
...@@ -14,7 +14,6 @@ from pandas.io.json import json_normalize ...@@ -14,7 +14,6 @@ from pandas.io.json import json_normalize
from factor import app from factor import app
from factor.factor_base import FactorBase from factor.factor_base import FactorBase
from factor.ttm_fundamental import * from factor.ttm_fundamental import *
from vision.fm.signletion_engine import *
from ultron.cluster.invoke.cache_data import cache_data from ultron.cluster.invoke.cache_data import cache_data
......
...@@ -13,10 +13,10 @@ import sys ...@@ -13,10 +13,10 @@ import sys
sys.path.append("..") sys.path.append("..")
import json import json
from factor import app
from pandas.io.json import json_normalize from pandas.io.json import json_normalize
from factor.ttm_fundamental import * from factor.ttm_fundamental import *
from factor.factor_base import FactorBase from factor.factor_base import FactorBase
from vision.fm.signletion_engine import *
from ultron.cluster.invoke.cache_data import cache_data from ultron.cluster.invoke.cache_data import cache_data
...@@ -526,7 +526,7 @@ def calculate(trade_date, valuation_sets, per_share): ...@@ -526,7 +526,7 @@ def calculate(trade_date, valuation_sets, per_share):
per_share._storage_data(factor_share_indicators, trade_date) per_share._storage_data(factor_share_indicators, trade_date)
# @app.task() @app.task()
def factor_calculate(**kwargs): def factor_calculate(**kwargs):
print("per_share_kwargs: {}".format(kwargs)) print("per_share_kwargs: {}".format(kwargs))
date_index = kwargs['date_index'] date_index = kwargs['date_index']
......
...@@ -17,7 +17,6 @@ from pandas.io.json import json_normalize ...@@ -17,7 +17,6 @@ from pandas.io.json import json_normalize
from factor import app from factor import app
from factor.factor_base import FactorBase from factor.factor_base import FactorBase
from factor.ttm_fundamental import * from factor.ttm_fundamental import *
from vision.fm.signletion_engine import *
from factor.utillities.calc_tools import CalcTools from factor.utillities.calc_tools import CalcTools
from ultron.cluster.invoke.cache_data import cache_data from ultron.cluster.invoke.cache_data import cache_data
......
from ultron.config import config_setting from ultron.config import config_setting
config_setting.set_queue(qtype='redis', host='10.15.5.34', port=6379, pwd='', db=1) config_setting.set_queue(qtype='redis', host='10.15.5.164', port=6379, pwd='', db=1)
config_setting.update() config_setting.update()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment