Commit 058c9bfd authored by Dr.李's avatar Dr.李

FIX: remove debug example

parent d3022cc3
"""
Created on 2020-11-21
@author: cheng.li
"""
import os
import datetime as dt
import numpy as np
import pandas as pd
from PyFin.api import *
from alphamind.api import *
start_date = '2020-01-01'
end_date = '2020-02-21'
freq = '10b'
horizon = map_freq(freq)
neutralized_risk = risk_styles + industry_styles
universe = Universe('hs300')
data_source = "mysql+mysqldb://reader:Reader#2020@121.37.138.1:13317/vision?charset=utf8"
offset = 1
method = 'ls'
industry_name = 'sw'
industry_level = 1
risk_model = 'short'
executor = NaiveExecutor()
ref_dates = makeSchedule(start_date, end_date, freq, 'china.sse')
engine = SqlEngine(data_source)
alpha_factors = {
'f01': LAST('EMA5D'),
'f02': LAST('EMV6D')
}
weights = dict(f01=1.0,
f02=1.0,
)
alpha_model = ConstLinearModel(features=alpha_factors, weights=weights)
def predict_worker(params):
data_meta = DataMeta(freq=freq,
universe=universe,
batch=1,
neutralized_risk=neutralized_risk,
risk_model='short',
pre_process=[winsorize_normal, standardize],
post_process=[standardize],
warm_start=0,
data_source=data_source)
ref_date, model = params
er, _ = predict_by_model(ref_date, model, data_meta)
return er
predicts = [predict_worker((d.strftime('%Y-%m-%d'), alpha_model)) for d in ref_dates]
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment