Commit 093c1659 authored by Dr.李's avatar Dr.李

update schedule setting

parent b9b8fdd2
...@@ -50,6 +50,8 @@ def map_freq(freq): ...@@ -50,6 +50,8 @@ def map_freq(freq):
horizon = 19 horizon = 19
elif freq == '1d': elif freq == '1d':
horizon = 0 horizon = 0
elif freq[-1] == "b":
horizon = int(freq[:-1]) - 1
else: else:
raise ValueError("Unrecognized freq: {0}".format(freq)) raise ValueError("Unrecognized freq: {0}".format(freq))
return horizon return horizon
......
...@@ -184,18 +184,19 @@ class SqlEngine(object): ...@@ -184,18 +184,19 @@ class SqlEngine(object):
ref_date: str, ref_date: str,
codes: Iterable[int], codes: Iterable[int],
expiry_date: str = None, expiry_date: str = None,
horizon: int = 0) -> pd.DataFrame: horizon: int = 0,
offset: int = 0) -> pd.DataFrame:
start_date = ref_date start_date = ref_date
if not expiry_date: if not expiry_date:
end_date = advanceDateByCalendar('china.sse', ref_date, str(horizon + DAILY_RETURN_OFFSET) + 'b').strftime('%Y%m%d') end_date = advanceDateByCalendar('china.sse', ref_date, str(horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime('%Y%m%d')
else: else:
end_date = expiry_date end_date = expiry_date
stats = func.sum(self.ln_func(1. + DailyReturn.d1)).over( stats = func.sum(self.ln_func(1. + DailyReturn.d1)).over(
partition_by=DailyReturn.code, partition_by=DailyReturn.code,
order_by=DailyReturn.trade_date, order_by=DailyReturn.trade_date,
rows=(DAILY_RETURN_OFFSET, horizon + DAILY_RETURN_OFFSET)).label('dx') rows=(DAILY_RETURN_OFFSET + offset, horizon + DAILY_RETURN_OFFSET + offset)).label('dx')
query = select([DailyReturn.trade_date, DailyReturn.code, stats]).where( query = select([DailyReturn.trade_date, DailyReturn.code, stats]).where(
and_( and_(
...@@ -213,13 +214,14 @@ class SqlEngine(object): ...@@ -213,13 +214,14 @@ class SqlEngine(object):
start_date: str = None, start_date: str = None,
end_date: str = None, end_date: str = None,
dates: Iterable[str] = None, dates: Iterable[str] = None,
horizon: int = 0) -> pd.DataFrame: horizon: int = 0,
offset: int = 0) -> pd.DataFrame:
if dates: if dates:
start_date = dates[0] start_date = dates[0]
end_date = dates[-1] end_date = dates[-1]
end_date = advanceDateByCalendar('china.sse', end_date, str(horizon + DAILY_RETURN_OFFSET) + 'b').strftime('%Y-%m-%d') end_date = advanceDateByCalendar('china.sse', end_date, str(horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime('%Y-%m-%d')
cond = universe.query_range(start_date, end_date) cond = universe.query_range(start_date, end_date)
big_table = join(DailyReturn, UniverseTable, big_table = join(DailyReturn, UniverseTable,
...@@ -230,7 +232,7 @@ class SqlEngine(object): ...@@ -230,7 +232,7 @@ class SqlEngine(object):
stats = func.sum(self.ln_func(1. + DailyReturn.d1)).over( stats = func.sum(self.ln_func(1. + DailyReturn.d1)).over(
partition_by=DailyReturn.code, partition_by=DailyReturn.code,
order_by=DailyReturn.trade_date, order_by=DailyReturn.trade_date,
rows=(DAILY_RETURN_OFFSET, horizon + DAILY_RETURN_OFFSET)).label('dx') rows=(offset + DAILY_RETURN_OFFSET, horizon + offset + DAILY_RETURN_OFFSET)).label('dx')
query = select([DailyReturn.trade_date, DailyReturn.code, stats]) \ query = select([DailyReturn.trade_date, DailyReturn.code, stats]) \
.select_from(big_table) .select_from(big_table)
......
...@@ -25,18 +25,18 @@ end_date = '2017-11-15' ...@@ -25,18 +25,18 @@ end_date = '2017-11-15'
benchmark_code = 300 benchmark_code = 300
universe_name = ['zz500', 'hs300'] universe_name = ['zz500', 'hs300']
universe = Universe(universe_name, universe_name) universe = Universe(universe_name, universe_name)
frequency = '2w' frequency = '2b'
batch = 8 batch = 8
method = 'risk_neutral' method = 'risk_neutral'
use_rank = 100 use_rank = 100
industry_lower = 1. industry_lower = 1.
industry_upper = 1. industry_upper = 1.
neutralize_risk = ['SIZE'] + industry_styles neutralize_risk = ['SIZE'] + industry_styles
constraint_risk = industry_styles constraint_risk = ['SIZE'] + industry_styles
size_risk_lower = 0 size_risk_lower = 0
size_risk_upper = 0 size_risk_upper = 0
turn_over_target_base = 0.2 turn_over_target_base = 0.1
weight_gap = 0.03 weight_gaps = [0.01, 0.02, 0.03, 0.04]
benchmark_total_lower = 0.8 benchmark_total_lower = 0.8
benchmark_total_upper = 1. benchmark_total_upper = 1.
horizon = map_freq(frequency) horizon = map_freq(frequency)
...@@ -101,7 +101,7 @@ for ref_date in ref_dates: ...@@ -101,7 +101,7 @@ for ref_date in ref_dates:
alpha_logger.info('trade_date: {0} training finished'.format(ref_date)) alpha_logger.info('trade_date: {0} training finished'.format(ref_date))
frequency = '1w' frequency = '2b'
ref_dates = makeSchedule(start_date, end_date, frequency, 'china.sse') ref_dates = makeSchedule(start_date, end_date, frequency, 'china.sse')
const_model_factor_data = engine.fetch_data_range(universe, const_model_factor_data = engine.fetch_data_range(universe,
...@@ -117,14 +117,17 @@ Predicting and re-balance phase ...@@ -117,14 +117,17 @@ Predicting and re-balance phase
factor_groups = const_model_factor_data.groupby('trade_date') factor_groups = const_model_factor_data.groupby('trade_date')
rets = [] for weight_gap in weight_gaps:
turn_overs = [] print("start {0} weight gap simulation ...".format(weight_gap))
leverags = []
previous_pos = pd.DataFrame()
index_dates = [] rets = []
turn_overs = []
leverags = []
previous_pos = pd.DataFrame()
for i, value in enumerate(factor_groups): index_dates = []
for i, value in enumerate(factor_groups):
date = value[0] date = value[0]
data = value[1] data = value[1]
ref_date = date.strftime('%Y-%m-%d') ref_date = date.strftime('%Y-%m-%d')
...@@ -245,7 +248,7 @@ for i, value in enumerate(factor_groups): ...@@ -245,7 +248,7 @@ for i, value in enumerate(factor_groups):
turn_over, executed_pos = executor.execute(target_pos=target_pos) turn_over, executed_pos = executor.execute(target_pos=target_pos)
executed_codes = executed_pos.code.tolist() executed_codes = executed_pos.code.tolist()
dx_returns = engine.fetch_dx_return(date, executed_codes, horizon=horizon) dx_returns = engine.fetch_dx_return(date, executed_codes, horizon=horizon, offset=1)
result = pd.merge(executed_pos, total_data[['code', 'weight']], on=['code'], how='inner') result = pd.merge(executed_pos, total_data[['code', 'weight']], on=['code'], how='inner')
result = pd.merge(result, dx_returns, on=['code']) result = pd.merge(result, dx_returns, on=['code'])
...@@ -261,27 +264,27 @@ for i, value in enumerate(factor_groups): ...@@ -261,27 +264,27 @@ for i, value in enumerate(factor_groups):
previous_pos = executed_pos previous_pos = executed_pos
alpha_logger.info('{0} is finished'.format(date)) alpha_logger.info('{0} is finished'.format(date))
ret_df = pd.DataFrame({'returns': rets, 'turn_over': turn_overs, 'leverage': leverage}, index=index_dates) ret_df = pd.DataFrame({'returns': rets, 'turn_over': turn_overs, 'leverage': leverage}, index=index_dates)
ret_df.loc[advanceDateByCalendar('china.sse', ref_dates[-1], frequency)] = 0. ret_df.loc[advanceDateByCalendar('china.sse', ref_dates[-1], frequency)] = 0.
ret_df = ret_df.shift(1) ret_df = ret_df.shift(1)
ret_df.iloc[0] = 0. ret_df.iloc[0] = 0.
ret_df['tc_cost'] = ret_df.turn_over * 0.002 ret_df['tc_cost'] = ret_df.turn_over * 0.002
ret_df[['returns', 'tc_cost']].cumsum().plot(figsize=(12, 6), ret_df[['returns', 'tc_cost']].cumsum().plot(figsize=(12, 6),
title='Fixed frequency rebalanced: {0}'.format(frequency), title='Fixed frequency rebalanced: {0}'.format(frequency),
secondary_y='tc_cost') secondary_y='tc_cost')
ret_df['ret_after_tc'] = ret_df['returns'] - ret_df['tc_cost'] ret_df['ret_after_tc'] = ret_df['returns'] - ret_df['tc_cost']
sharp_calc = MovingSharp(52) sharp_calc = MovingSharp(49)
drawdown_calc = MovingMaxDrawdown(52) drawdown_calc = MovingMaxDrawdown(49)
max_drawdown_calc = MovingMaxDrawdown(len(ret_df)) max_drawdown_calc = MovingMaxDrawdown(len(ret_df))
res_df = pd.DataFrame(columns=['daily_return', 'cum_ret', 'sharp', 'drawdown', 'max_drawn']) res_df = pd.DataFrame(columns=['daily_return', 'cum_ret', 'sharp', 'drawdown', 'max_drawn'])
total_returns = 0. total_returns = 0.
for i, ret in enumerate(ret_df['ret_after_tc']): for i, ret in enumerate(ret_df['ret_after_tc']):
date = ret_df.index[i] date = ret_df.index[i]
total_returns += ret total_returns += ret
sharp_calc.push({'ret': ret, 'riskFree': 0.}) sharp_calc.push({'ret': ret, 'riskFree': 0.})
...@@ -296,8 +299,8 @@ for i, ret in enumerate(ret_df['ret_after_tc']): ...@@ -296,8 +299,8 @@ for i, ret in enumerate(ret_df['ret_after_tc']):
if i < 10: if i < 10:
res_df.loc[date, 'sharp'] = 0. res_df.loc[date, 'sharp'] = 0.
else: else:
res_df.loc[date, 'sharp'] = sharp_calc.result() * np.sqrt(52) res_df.loc[date, 'sharp'] = sharp_calc.result() * np.sqrt(49)
res_df.to_csv('hs300_{0}.csv'.format(int(weight_gap * 100))) res_df.to_csv('hs300_{0}.csv'.format(int(weight_gap * 100)))
#plt.show() # plt.show()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment