Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
0c7657eb
Commit
0c7657eb
authored
Aug 28, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
made it possible to do a empty factor list
parent
4af7af65
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
100 additions
and
14 deletions
+100
-14
factoranalysis.py
alphamind/analysis/factoranalysis.py
+3
-0
sqlengine.py
alphamind/data/engines/sqlengine.py
+71
-9
transformer.py
alphamind/data/transformer.py
+13
-4
data_preparing.py
alphamind/model/data_preparing.py
+13
-1
No files found.
alphamind/analysis/factoranalysis.py
View file @
0c7657eb
...
...
@@ -66,6 +66,9 @@ def er_portfolio_analysis(er: np.ndarray,
is_tradable
:
Optional
[
np
.
ndarray
]
=
None
,
method
=
'risk_neutral'
,
**
kwargs
)
->
Tuple
[
pd
.
DataFrame
,
Optional
[
pd
.
DataFrame
]]:
er
=
er
.
flatten
()
def
create_constraints
(
benchmark
,
**
kwargs
):
if
'lbound'
in
kwargs
:
lbound
=
kwargs
[
'lbound'
]
...
...
alphamind/data/engines/sqlengine.py
View file @
0c7657eb
...
...
@@ -21,6 +21,7 @@ from alphamind.data.dbmodel.models import FactorMaster
from
alphamind.data.dbmodel.models
import
Strategy
from
alphamind.data.dbmodel.models
import
DailyReturn
from
alphamind.data.dbmodel.models
import
IndexComponent
from
alphamind.data.dbmodel.models
import
Industry
from
alphamind.data.dbmodel.models
import
Uqer
from
alphamind.data.dbmodel.models
import
Tiny
from
alphamind.data.dbmodel.models
import
LegacyFactor
...
...
@@ -117,6 +118,13 @@ def _map_factors(factors: Iterable[str]) -> dict:
return
factor_cols
def
_map_industry_category
(
category
:
str
)
->
str
:
if
category
==
'sw'
:
return
'申万行业分类'
else
:
raise
ValueError
(
"No other industry is supported at the current time"
)
class
SqlEngine
(
object
):
def
__init__
(
self
,
db_url
:
str
):
...
...
@@ -414,7 +422,48 @@ class SqlEngine(object):
return
risk_cov
,
risk_exp
def
fetch_data
(
self
,
ref_date
,
def
fetch_industry
(
self
,
ref_date
:
str
,
codes
:
Iterable
[
int
],
category
:
str
=
'sw'
):
industry_category_name
=
_map_industry_category
(
category
)
query
=
select
([
Industry
.
code
,
Industry
.
industryID1
.
label
(
'industry_code'
),
Industry
.
industryName1
.
label
(
'industry'
)])
.
where
(
and_
(
Industry
.
trade_date
==
ref_date
,
Industry
.
code
.
in_
(
codes
),
Industry
.
industry
==
industry_category_name
)
)
return
pd
.
read_sql
(
query
,
self
.
engine
)
def
fetch_industry_range
(
self
,
universe
:
Universe
,
start_date
:
str
=
None
,
end_date
:
str
=
None
,
dates
:
Iterable
[
str
]
=
None
,
category
:
str
=
'sw'
):
industry_category_name
=
_map_industry_category
(
category
)
q2
=
universe
.
query_range
(
start_date
,
end_date
,
dates
)
.
alias
(
'temp_universe'
)
big_table
=
join
(
Industry
,
q2
,
and_
(
Industry
.
trade_date
==
q2
.
c
.
trade_date
,
Industry
.
code
==
q2
.
c
.
code
))
query
=
select
(
[
Industry
.
trade_date
,
Industry
.
code
,
Industry
.
industryID1
.
label
(
'industry_code'
),
Industry
.
industryName1
.
label
(
'industry'
)])
.
\
select_from
(
big_table
)
.
where
(
Industry
.
industry
==
industry_category_name
)
return
pd
.
read_sql
(
query
,
self
.
engine
)
def
fetch_data
(
self
,
ref_date
:
str
,
factors
:
Iterable
[
str
],
codes
:
Iterable
[
int
],
benchmark
:
int
=
None
,
...
...
@@ -449,7 +498,8 @@ class SqlEngine(object):
end_date
:
str
=
None
,
dates
:
Iterable
[
str
]
=
None
,
benchmark
:
int
=
None
,
risk_model
:
str
=
'short'
)
->
Dict
[
str
,
pd
.
DataFrame
]:
risk_model
:
str
=
'short'
,
industry
:
str
=
'sw'
)
->
Dict
[
str
,
pd
.
DataFrame
]:
total_data
=
{}
transformer
=
Transformer
(
factors
)
...
...
@@ -467,22 +517,34 @@ class SqlEngine(object):
factor_data
=
pd
.
merge
(
factor_data
,
risk_exp
,
how
=
'left'
,
on
=
[
'trade_date'
,
'code'
])
total_data
[
'risk_cov'
]
=
risk_cov
total_data
[
'factor'
]
=
factor_data
industry_info
=
self
.
fetch_industry_range
(
universe
,
start_date
=
start_date
,
end_date
=
end_date
,
dates
=
dates
,
category
=
industry
)
append_industry_info
(
factor_data
)
factor_data
=
pd
.
merge
(
factor_data
,
industry_info
,
on
=
[
'trade_date'
,
'code'
])
total_data
[
'factor'
]
=
factor_data
return
total_data
if
__name__
==
'__main__'
:
from
PyFin.api
import
*
db_url
=
'postgresql+psycopg2://postgres:
we083826@localhost
/alpha'
db_url
=
'mssql+pymssql://licheng:A12345678!@10.63.6.220/alpha'
db_url
=
'postgresql+psycopg2://postgres:
A12345678!@10.63.6.220
/alpha'
#
db_url = 'mssql+pymssql://licheng:A12345678!@10.63.6.220/alpha'
universe
=
Universe
(
'custom'
,
[
'zz500'
])
engine
=
SqlEngine
(
db_url
)
ref_date
=
'2017-08-10'
codes
=
engine
.
fetch_codes
(
universe
=
universe
,
ref_date
=
'2017-08-10'
)
data2
=
engine
.
fetch_factor_range
(
universe
=
universe
,
dates
=
[
'2017-08-01'
,
'2017-08-10'
],
factors
=
{
'factor'
:
MAXIMUM
((
'EPS'
,
'ROEDiluted'
))})
start_date
=
'2017-08-01'
end_date
=
'2017-08-12'
codes
=
engine
.
fetch_codes
(
universe
=
universe
,
ref_date
=
ref_date
)
data2
=
engine
.
fetch_industry
(
ref_date
=
ref_date
,
codes
=
codes
)
data2
=
engine
.
fetch_data_range
(
universe
,
factors
=
[
'EPS'
],
start_date
=
start_date
,
end_date
=
end_date
)
print
(
codes
)
print
(
data2
)
alphamind/data/transformer.py
View file @
0c7657eb
...
...
@@ -16,6 +16,9 @@ DEFAULT_FACTOR_NAME = 'user_factor'
def
factor_translator
(
factor_pool
):
if
not
factor_pool
:
return
None
,
None
if
isinstance
(
factor_pool
,
str
):
return
{
factor_pool
:
factor_pool
},
[
factor_pool
]
elif
isinstance
(
factor_pool
,
SecurityValueHolder
):
...
...
@@ -57,11 +60,17 @@ class Transformer(object):
expression_dict
,
expression_dependency
=
\
factor_translator
(
expressions
)
res
=
list
(
zip
(
*
list
(
expression_dict
.
items
())))
if
expression_dict
:
res
=
list
(
zip
(
*
list
(
expression_dict
.
items
())))
self
.
names
=
list
(
res
[
0
])
self
.
expressions
=
list
(
res
[
1
])
self
.
dependency
=
expression_dependency
self
.
names
=
list
(
res
[
0
])
self
.
expressions
=
list
(
res
[
1
])
self
.
dependency
=
expression_dependency
else
:
self
.
names
=
[]
self
.
expressions
=
[]
self
.
dependency
=
[]
def
transform
(
self
,
group_name
,
data
):
if
len
(
data
)
>
0
:
...
...
alphamind/model/data_preparing.py
View file @
0c7657eb
...
...
@@ -15,6 +15,7 @@ from alphamind.data.transformer import Transformer
from
alphamind.data.engines.sqlengine
import
SqlEngine
from
alphamind.data.engines.universe
import
Universe
from
alphamind.data.processing
import
factor_processing
from
alphamind.utilities
import
alpha_logger
def
_map_horizon
(
frequency
:
str
)
->
int
:
...
...
@@ -52,13 +53,15 @@ def prepare_data(engine: SqlEngine,
dates
=
dates
,
warm_start
=
warm_start
)
.
sort_values
([
'trade_date'
,
'code'
])
return_df
=
engine
.
fetch_dx_return_range
(
universe
,
dates
=
dates
,
horizon
=
horizon
)
industry_df
=
engine
.
fetch_industry_range
(
universe
,
dates
=
dates
)
benchmark_df
=
engine
.
fetch_benchmark_range
(
benchmark
,
dates
=
dates
)
df
=
pd
.
merge
(
factor_df
,
return_df
,
on
=
[
'trade_date'
,
'code'
])
.
dropna
()
df
=
pd
.
merge
(
df
,
benchmark_df
,
on
=
[
'trade_date'
,
'code'
],
how
=
'left'
)
df
=
pd
.
merge
(
df
,
industry_df
,
on
=
[
'trade_date'
,
'code'
])
df
[
'weight'
]
=
df
[
'weight'
]
.
fillna
(
0.
)
return
df
[[
'trade_date'
,
'code'
,
'dx'
]],
df
[[
'trade_date'
,
'code'
,
'weight'
]
+
transformer
.
names
]
return
df
[[
'trade_date'
,
'code'
,
'dx'
]],
df
[[
'trade_date'
,
'code'
,
'weight'
,
'isOpen'
,
'industry_code'
,
'industry'
]
+
transformer
.
names
]
def
batch_processing
(
x_values
,
...
...
@@ -123,6 +126,8 @@ def fetch_data_package(engine: SqlEngine,
risk_model
:
str
=
'short'
,
pre_process
:
Iterable
[
object
]
=
None
,
post_process
:
Iterable
[
object
]
=
None
):
alpha_logger
.
info
(
"Starting data package fetching ..."
)
transformer
=
Transformer
(
alpha_factors
)
dates
=
makeSchedule
(
start_date
,
end_date
,
frequency
,
calendar
=
'china.sse'
,
dateRule
=
BizDayConventions
.
Following
)
return_df
,
factor_df
=
prepare_data
(
engine
,
...
...
@@ -134,6 +139,8 @@ def fetch_data_package(engine: SqlEngine,
benchmark
,
warm_start
)
alpha_logger
.
info
(
"Loading data is finished"
)
if
neutralized_risk
:
risk_df
=
engine
.
fetch_risk_model_range
(
universe
,
dates
=
dates
,
risk_model
=
risk_model
)[
1
]
used_neutralized_risk
=
list
(
set
(
neutralized_risk
)
.
difference
(
transformer
.
names
))
...
...
@@ -157,6 +164,9 @@ def fetch_data_package(engine: SqlEngine,
dates
=
np
.
unique
(
date_label
)
return_df
[
'weight'
]
=
train_x
[
'weight'
]
return_df
[
'industry'
]
=
train_x
[
'industry'
]
return_df
[
'industry_code'
]
=
train_x
[
'industry_code'
]
return_df
[
'isOpen'
]
=
train_x
[
'isOpen'
]
train_x_buckets
,
train_y_buckets
,
predict_x_buckets
=
batch_processing
(
x_values
,
y_values
,
...
...
@@ -167,6 +177,8 @@ def fetch_data_package(engine: SqlEngine,
pre_process
,
post_process
)
alpha_logger
.
info
(
"Data processing is finished"
)
ret
=
dict
()
ret
[
'settlement'
]
=
return_df
ret
[
'train'
]
=
{
'x'
:
train_x_buckets
,
'y'
:
train_y_buckets
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment