Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
22137a83
Commit
22137a83
authored
Jan 08, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added random forest classifier
parent
e4487d31
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
67 additions
and
3 deletions
+67
-3
api.py
alphamind/api.py
+2
-0
__init__.py
alphamind/model/__init__.py
+2
-0
loader.py
alphamind/model/loader.py
+3
-0
treemodel.py
alphamind/model/treemodel.py
+43
-2
test_treemodel.py
alphamind/tests/model/test_treemodel.py
+17
-1
No files found.
alphamind/api.py
View file @
22137a83
...
...
@@ -30,6 +30,7 @@ from alphamind.model import LassoRegression
from
alphamind.model
import
ConstLinearModel
from
alphamind.model
import
LogisticRegression
from
alphamind.model
import
RandomForestRegressor
from
alphamind.model
import
RandomForestClassifier
from
alphamind.model
import
XGBRegressor
from
alphamind.model
import
XGBClassifier
from
alphamind.model
import
load_model
...
...
@@ -70,6 +71,7 @@ __all__ = [
'ConstLinearModel'
,
'LogisticRegression'
,
'RandomForestRegressor'
,
'RandomForestClassifier'
,
'XGBRegressor'
,
'XGBClassifier'
,
'load_model'
,
...
...
alphamind/model/__init__.py
View file @
22137a83
...
...
@@ -11,6 +11,7 @@ from alphamind.model.linearmodel import ConstLinearModel
from
alphamind.model.linearmodel
import
LogisticRegression
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
...
...
@@ -22,6 +23,7 @@ __all__ = ['LinearRegression',
'ConstLinearModel'
,
'LogisticRegression'
,
'RandomForestRegressor'
,
'RandomForestClassifier'
,
'XGBRegressor'
,
'XGBClassifier'
,
'load_model'
]
\ No newline at end of file
alphamind/model/loader.py
View file @
22137a83
...
...
@@ -11,6 +11,7 @@ from alphamind.model.linearmodel import LinearRegression
from
alphamind.model.linearmodel
import
LassoRegression
from
alphamind.model.linearmodel
import
LogisticRegression
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
...
...
@@ -30,6 +31,8 @@ def load_model(model_desc: dict) -> ModelBase:
return
LogisticRegression
.
load
(
model_desc
)
elif
'RandomForestRegressor'
in
model_name_parts
:
return
RandomForestRegressor
.
load
(
model_desc
)
elif
'RandomForestClassifier'
in
model_name_parts
:
return
RandomForestClassifier
.
load
(
model_desc
)
elif
'XGBRegressor'
in
model_name_parts
:
return
XGBRegressor
.
load
(
model_desc
)
elif
'XGBClassifier'
in
model_name_parts
:
...
...
alphamind/model/treemodel.py
View file @
22137a83
...
...
@@ -9,6 +9,7 @@ from typing import List
from
distutils.version
import
LooseVersion
from
sklearn
import
__version__
as
sklearn_version
from
sklearn.ensemble
import
RandomForestRegressor
as
RandomForestRegressorImpl
from
sklearn.ensemble
import
RandomForestClassifier
as
RandomForestClassifierImpl
from
xgboost
import
__version__
as
xgbboot_version
from
xgboost
import
XGBRegressor
as
XGBRegressorImpl
from
xgboost
import
XGBClassifier
as
XGBClassifierImpl
...
...
@@ -18,9 +19,49 @@ from alphamind.utilities import alpha_logger
class
RandomForestRegressor
(
ModelBase
):
def
__init__
(
self
,
n_estimators
:
int
=
100
,
features
:
List
=
None
,
**
kwargs
):
def
__init__
(
self
,
n_estimators
:
int
=
100
,
max_features
:
str
=
'auto'
,
features
:
List
=
None
,
**
kwargs
):
super
()
.
__init__
(
features
)
self
.
impl
=
RandomForestRegressorImpl
(
n_estimators
,
**
kwargs
)
self
.
impl
=
RandomForestRegressorImpl
(
n_estimators
=
n_estimators
,
max_features
=
max_features
,
**
kwargs
)
self
.
trained_time
=
None
def
save
(
self
)
->
dict
:
model_desc
=
super
()
.
save
()
model_desc
[
'sklearn_version'
]
=
sklearn_version
model_desc
[
'importances'
]
=
self
.
importances
return
model_desc
@
classmethod
def
load
(
cls
,
model_desc
:
dict
):
obj_layout
=
super
()
.
load
(
model_desc
)
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'sklearn_version'
]):
alpha_logger
.
warning
(
'Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
return
obj_layout
@
property
def
importances
(
self
):
return
self
.
impl
.
feature_importances_
.
tolist
()
class
RandomForestClassifier
(
ModelBase
):
def
__init__
(
self
,
n_estimators
:
int
=
100
,
max_features
:
str
=
'auto'
,
features
:
List
=
None
,
**
kwargs
):
super
()
.
__init__
(
features
)
self
.
impl
=
RandomForestClassifierImpl
(
n_estimators
=
n_estimators
,
max_features
=
max_features
,
**
kwargs
)
self
.
trained_time
=
None
def
save
(
self
)
->
dict
:
...
...
alphamind/tests/model/test_treemodel.py
View file @
22137a83
...
...
@@ -9,13 +9,14 @@ import unittest
import
numpy
as
np
from
alphamind.model.loader
import
load_model
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
class
TestTreeModel
(
unittest
.
TestCase
):
def
test_random_forest_regress
(
self
):
def
test_random_forest_regress
_persistence
(
self
):
model
=
RandomForestRegressor
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
y
=
np
.
random
.
randn
(
1000
)
...
...
@@ -29,6 +30,21 @@ class TestTreeModel(unittest.TestCase):
sample_x
=
np
.
random
.
randn
(
100
,
10
)
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
def
test_random_forest_classify_persistence
(
self
):
model
=
RandomForestClassifier
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
y
=
np
.
random
.
randn
(
1000
)
y
=
np
.
where
(
y
>
0
,
1
,
0
)
model
.
fit
(
x
,
y
)
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
self
.
assertEqual
(
model
.
features
,
new_model
.
features
)
sample_x
=
np
.
random
.
randn
(
100
,
10
)
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
def
test_xgb_regress_persistence
(
self
):
model
=
XGBRegressor
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment