Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
2c354f4c
Commit
2c354f4c
authored
Apr 12, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fixed test and added one more api for get forwarding factor
parent
957f8a82
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
57 additions
and
11 deletions
+57
-11
sqlengine.py
alphamind/data/engines/sqlengine.py
+53
-8
utilities.py
alphamind/data/engines/utilities.py
+2
-1
targetvolexecutor.py
alphamind/execution/targetvolexecutor.py
+2
-2
No files found.
alphamind/data/engines/sqlengine.py
View file @
2c354f4c
...
...
@@ -417,8 +417,7 @@ class SqlEngine(object):
df
=
pd
.
read_sql
(
query
,
self
.
engine
)
if
universe
.
is_filtered
:
codes
=
universe
.
query
(
self
,
start_date
,
end_date
,
dates
)
df
=
pd
.
merge
(
df
,
codes
,
how
=
'inner'
,
on
=
[
'trade_date'
,
'code'
])
df
=
pd
.
merge
(
df
,
universe_df
,
how
=
'inner'
,
on
=
[
'trade_date'
,
'code'
])
if
external_data
is
not
None
:
df
=
pd
.
merge
(
df
,
external_data
,
on
=
[
'trade_date'
,
'code'
])
.
dropna
()
...
...
@@ -435,6 +434,55 @@ class SqlEngine(object):
df
=
df
.
reset_index
()
return
pd
.
merge
(
df
,
universe_df
[[
'trade_date'
,
'code'
]],
how
=
'inner'
)
def
fetch_factor_range_forward
(
self
,
universe
:
Universe
,
factors
:
Union
[
Transformer
,
object
],
start_date
:
str
=
None
,
end_date
:
str
=
None
,
dates
:
Iterable
[
str
]
=
None
):
if
isinstance
(
factors
,
Transformer
):
transformer
=
factors
else
:
transformer
=
Transformer
(
factors
)
dependency
=
transformer
.
dependency
factor_cols
=
_map_factors
(
dependency
,
factor_tables
)
codes
=
universe
.
query
(
self
,
start_date
,
end_date
,
dates
)
total_codes
=
codes
.
code
.
unique
()
.
tolist
()
total_dates
=
codes
.
trade_date
.
astype
(
str
)
.
unique
()
.
tolist
()
big_table
=
Market
joined_tables
=
set
()
joined_tables
.
add
(
Market
.
__table__
.
name
)
for
t
in
set
(
factor_cols
.
values
()):
if
t
.
__table__
.
name
not
in
joined_tables
:
if
dates
is
not
None
:
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
Market
.
trade_date
==
t
.
trade_date
,
Market
.
code
==
t
.
code
,
Market
.
trade_date
.
in_
(
dates
)))
else
:
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
Market
.
trade_date
==
t
.
trade_date
,
Market
.
code
==
t
.
code
,
Market
.
trade_date
.
between
(
start_date
,
end_date
)))
joined_tables
.
add
(
t
.
__table__
.
name
)
stats
=
func
.
lag
(
list
(
factor_cols
.
keys
())[
0
],
-
1
)
.
over
(
partition_by
=
Market
.
code
,
order_by
=
Market
.
trade_date
)
.
label
(
'dx'
)
query
=
select
([
Market
.
trade_date
,
Market
.
code
,
stats
])
.
select_from
(
big_table
)
.
where
(
and_
(
Market
.
trade_date
.
in_
(
total_dates
),
Market
.
code
.
in_
(
total_codes
)
)
)
df
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
([
'trade_date'
,
'code'
])
return
df
def
fetch_benchmark
(
self
,
ref_date
:
str
,
benchmark
:
int
,
...
...
@@ -988,9 +1036,6 @@ if __name__ == '__main__':
universe
=
Universe
(
''
,
[
'zz800'
])
codes
=
engine
.
fetch_codes
(
ref_date
,
universe
)
dates
=
makeSchedule
(
'2010-01-01'
,
'2018-02-01'
,
'10b'
,
'china.sse'
)
# df = engine.fetch_factor_range(universe, DIFF('roe_q'), dates=dates)
risk_cov
,
risk_exposure
=
engine
.
fetch_risk_model
(
ref_date
,
codes
)
factor_data
=
engine
.
fetch_factor_range
(
universe
,
[
'roe_q'
],
dates
=
dates
)
risk_cov
,
risk_exposure
=
engine
.
fetch_risk_model_range
(
universe
,
dates
=
dates
)
dates
=
makeSchedule
(
'2018-01-01'
,
'2018-02-01'
,
'10b'
,
'china.sse'
)
factor_data
=
engine
.
fetch_factor_range_forward
(
universe
,
[
'roe_q'
],
dates
=
dates
)
print
(
factor_data
)
alphamind/data/engines/utilities.py
View file @
2c354f4c
...
...
@@ -7,6 +7,7 @@ Created on 2017-12-25
from
typing
import
Iterable
from
typing
import
Dict
from
alphamind.data.dbmodel.models
import
Market
from
alphamind.data.dbmodel.models
import
RiskCovDay
from
alphamind.data.dbmodel.models
import
RiskCovShort
from
alphamind.data.dbmodel.models
import
RiskCovLong
...
...
@@ -22,7 +23,7 @@ from alphamind.data.dbmodel.models import RiskExposure
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
factor_tables
=
[
RiskExposure
,
Uqer
,
Gogoal
,
Experimental
,
LegacyFactor
,
Tiny
]
factor_tables
=
[
Market
,
RiskExposure
,
Uqer
,
Gogoal
,
Experimental
,
LegacyFactor
,
Tiny
]
def
_map_risk_model_table
(
risk_model
:
str
)
->
tuple
:
...
...
alphamind/execution/targetvolexecutor.py
View file @
2c354f4c
...
...
@@ -16,8 +16,8 @@ class TargetVolExecutor(ExecutorBase):
def
__init__
(
self
,
window
=
30
,
target_vol
=
0.01
):
super
()
.
__init__
()
self
.
m_vol
=
MovingStandardDeviation
(
window
=
window
,
dependency
=
'return'
)
self
.
m_leverage
=
MovingAverage
(
window
=
window
,
dependency
=
'leverage'
)
self
.
m_vol
=
MovingStandardDeviation
(
window
,
'return'
)
self
.
m_leverage
=
MovingAverage
(
window
,
'leverage'
)
self
.
target_vol
=
target_vol
self
.
multiplier
=
1.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment