Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
348a9c38
Commit
348a9c38
authored
Jan 06, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added more model
parent
2cf8fae1
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
104 additions
and
40 deletions
+104
-40
api.py
alphamind/api.py
+3
-21
__init__.py
alphamind/model/__init__.py
+2
-0
data_preparing.py
alphamind/model/data_preparing.py
+4
-18
linearmodel.py
alphamind/model/linearmodel.py
+28
-0
loader.py
alphamind/model/loader.py
+3
-0
treemodel.py
alphamind/model/treemodel.py
+10
-0
test_linearmodel.py
alphamind/tests/model/test_linearmodel.py
+33
-1
utilities.py
alphamind/utilities.py
+21
-0
No files found.
alphamind/api.py
View file @
348a9c38
...
@@ -28,6 +28,7 @@ from alphamind.data.engines.sqlengine import factor_tables
...
@@ -28,6 +28,7 @@ from alphamind.data.engines.sqlengine import factor_tables
from
alphamind.model
import
LinearRegression
from
alphamind.model
import
LinearRegression
from
alphamind.model
import
LassoRegression
from
alphamind.model
import
LassoRegression
from
alphamind.model
import
ConstLinearModel
from
alphamind.model
import
ConstLinearModel
from
alphamind.model
import
LogisticRegression
from
alphamind.model
import
RandomForestRegressor
from
alphamind.model
import
RandomForestRegressor
from
alphamind.model
import
XGBRegressor
from
alphamind.model
import
XGBRegressor
from
alphamind.model
import
load_model
from
alphamind.model
import
load_model
...
@@ -40,27 +41,7 @@ from alphamind.execution.targetvolexecutor import TargetVolExecutor
...
@@ -40,27 +41,7 @@ from alphamind.execution.targetvolexecutor import TargetVolExecutor
from
alphamind.execution.pipeline
import
ExecutionPipeline
from
alphamind.execution.pipeline
import
ExecutionPipeline
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
map_freq
def
map_freq
(
freq
):
if
freq
==
'1m'
:
horizon
=
21
elif
freq
==
'1w'
:
horizon
=
4
elif
freq
==
'2w'
:
horizon
=
9
elif
freq
==
'3w'
:
horizon
=
14
elif
freq
==
'4w'
:
horizon
=
19
elif
freq
==
'1d'
:
horizon
=
0
elif
freq
[
-
1
]
==
"b"
:
horizon
=
int
(
freq
[:
-
1
])
-
1
else
:
raise
ValueError
(
"Unrecognized freq: {0}"
.
format
(
freq
))
return
horizon
__all__
=
[
__all__
=
[
...
@@ -86,6 +67,7 @@ __all__ = [
...
@@ -86,6 +67,7 @@ __all__ = [
'LinearRegression'
,
'LinearRegression'
,
'LassoRegression'
,
'LassoRegression'
,
'ConstLinearModel'
,
'ConstLinearModel'
,
'LogisticRegression'
,
'RandomForestRegressor'
,
'RandomForestRegressor'
,
'XGBRegressor'
,
'XGBRegressor'
,
'load_model'
,
'load_model'
,
...
...
alphamind/model/__init__.py
View file @
348a9c38
...
@@ -8,6 +8,7 @@ Created on 2017-5-2
...
@@ -8,6 +8,7 @@ Created on 2017-5-2
from
alphamind.model.linearmodel
import
LinearRegression
from
alphamind.model.linearmodel
import
LinearRegression
from
alphamind.model.linearmodel
import
LassoRegression
from
alphamind.model.linearmodel
import
LassoRegression
from
alphamind.model.linearmodel
import
ConstLinearModel
from
alphamind.model.linearmodel
import
ConstLinearModel
from
alphamind.model.linearmodel
import
LogisticRegression
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
...
@@ -18,6 +19,7 @@ from alphamind.model.loader import load_model
...
@@ -18,6 +19,7 @@ from alphamind.model.loader import load_model
__all__
=
[
'LinearRegression'
,
__all__
=
[
'LinearRegression'
,
'LassoRegression'
,
'LassoRegression'
,
'ConstLinearModel'
,
'ConstLinearModel'
,
'LogisticRegression'
,
'RandomForestRegressor'
,
'RandomForestRegressor'
,
'XGBRegressor'
,
'XGBRegressor'
,
'load_model'
]
'load_model'
]
\ No newline at end of file
alphamind/model/data_preparing.py
View file @
348a9c38
...
@@ -16,27 +16,13 @@ from PyFin.api import BizDayConventions
...
@@ -16,27 +16,13 @@ from PyFin.api import BizDayConventions
from
PyFin.api
import
DateGeneration
from
PyFin.api
import
DateGeneration
from
PyFin.api
import
advanceDateByCalendar
from
PyFin.api
import
advanceDateByCalendar
from
PyFin.DateUtilities
import
Period
from
PyFin.DateUtilities
import
Period
from
PyFin.Enums
import
TimeUnits
from
alphamind.data.transformer
import
Transformer
from
alphamind.data.transformer
import
Transformer
from
alphamind.data.engines.sqlengine
import
SqlEngine
from
alphamind.data.engines.sqlengine
import
SqlEngine
from
alphamind.data.engines.universe
import
Universe
from
alphamind.data.engines.universe
import
Universe
from
alphamind.data.processing
import
factor_processing
from
alphamind.data.processing
import
factor_processing
from
alphamind.data.engines.sqlengine
import
total_risk_factors
from
alphamind.data.engines.sqlengine
import
total_risk_factors
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
map_freq
def
_map_horizon
(
frequency
:
str
)
->
int
:
parsed_period
=
Period
(
frequency
)
unit
=
parsed_period
.
units
()
length
=
parsed_period
.
length
()
if
unit
==
TimeUnits
.
BDays
or
unit
==
TimeUnits
.
Days
:
return
length
-
1
elif
unit
==
TimeUnits
.
Weeks
:
return
5
*
length
-
1
elif
unit
==
TimeUnits
.
Months
:
return
22
*
length
-
1
else
:
raise
ValueError
(
'{0} is an unrecognized frequency rule'
.
format
(
frequency
))
def
_merge_df
(
engine
,
names
,
factor_df
,
return_df
,
universe
,
dates
,
risk_model
,
neutralized_risk
):
def
_merge_df
(
engine
,
names
,
factor_df
,
return_df
,
universe
,
dates
,
risk_model
,
neutralized_risk
):
...
@@ -86,7 +72,7 @@ def prepare_data(engine: SqlEngine,
...
@@ -86,7 +72,7 @@ def prepare_data(engine: SqlEngine,
dates
=
[
d
.
strftime
(
'
%
Y-
%
m-
%
d'
)
for
d
in
dates
]
dates
=
[
d
.
strftime
(
'
%
Y-
%
m-
%
d'
)
for
d
in
dates
]
horizon
=
_map_horizon
(
frequency
)
horizon
=
map_freq
(
frequency
)
if
isinstance
(
factors
,
Transformer
):
if
isinstance
(
factors
,
Transformer
):
transformer
=
factors
transformer
=
factors
...
@@ -265,7 +251,7 @@ def fetch_train_phase(engine,
...
@@ -265,7 +251,7 @@ def fetch_train_phase(engine,
dateRule
=
BizDayConventions
.
Following
,
dateRule
=
BizDayConventions
.
Following
,
dateGenerationRule
=
DateGeneration
.
Backward
)
dateGenerationRule
=
DateGeneration
.
Backward
)
horizon
=
_map_horizon
(
frequency
)
horizon
=
map_freq
(
frequency
)
factor_df
=
engine
.
fetch_factor_range
(
universe
,
factors
=
transformer
,
dates
=
dates
)
factor_df
=
engine
.
fetch_factor_range
(
universe
,
factors
=
transformer
,
dates
=
dates
)
return_df
=
engine
.
fetch_dx_return_range
(
universe
,
dates
=
dates
,
horizon
=
horizon
)
return_df
=
engine
.
fetch_dx_return_range
(
universe
,
dates
=
dates
,
horizon
=
horizon
)
...
@@ -344,10 +330,10 @@ def fetch_predict_phase(engine,
...
@@ -344,10 +330,10 @@ def fetch_predict_phase(engine,
risk_df
=
risk_df
[[
'trade_date'
,
'code'
]
+
used_neutralized_risk
]
.
dropna
()
risk_df
=
risk_df
[[
'trade_date'
,
'code'
]
+
used_neutralized_risk
]
.
dropna
()
train_x
=
pd
.
merge
(
factor_df
,
risk_df
,
on
=
[
'trade_date'
,
'code'
])
train_x
=
pd
.
merge
(
factor_df
,
risk_df
,
on
=
[
'trade_date'
,
'code'
])
risk_exp
=
train_x
[
neutralized_risk
]
.
values
.
astype
(
float
)
risk_exp
=
train_x
[
neutralized_risk
]
.
values
.
astype
(
float
)
x_values
=
train_x
[
names
]
.
values
.
astype
(
float
)
else
:
else
:
train_x
=
factor_df
.
copy
()
train_x
=
factor_df
.
copy
()
risk_exp
=
None
risk_exp
=
None
x_values
=
train_x
[
names
]
.
values
.
astype
(
float
)
date_label
=
pd
.
DatetimeIndex
(
factor_df
.
trade_date
)
.
to_pydatetime
()
date_label
=
pd
.
DatetimeIndex
(
factor_df
.
trade_date
)
.
to_pydatetime
()
dates
=
np
.
unique
(
date_label
)
dates
=
np
.
unique
(
date_label
)
...
...
alphamind/model/linearmodel.py
View file @
348a9c38
...
@@ -10,6 +10,7 @@ from distutils.version import LooseVersion
...
@@ -10,6 +10,7 @@ from distutils.version import LooseVersion
from
sklearn
import
__version__
as
sklearn_version
from
sklearn
import
__version__
as
sklearn_version
from
sklearn.linear_model
import
LinearRegression
as
LinearRegressionImpl
from
sklearn.linear_model
import
LinearRegression
as
LinearRegressionImpl
from
sklearn.linear_model
import
Lasso
from
sklearn.linear_model
import
Lasso
from
sklearn.linear_model
import
LogisticRegression
as
LogisticRegressionImpl
from
PyFin.api
import
pyFinAssert
from
PyFin.api
import
pyFinAssert
from
alphamind.model.modelbase
import
ModelBase
from
alphamind.model.modelbase
import
ModelBase
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
alpha_logger
...
@@ -109,6 +110,33 @@ class LassoRegression(ModelBase):
...
@@ -109,6 +110,33 @@ class LassoRegression(ModelBase):
return
self
.
impl
.
coef_
.
tolist
()
return
self
.
impl
.
coef_
.
tolist
()
class
LogisticRegression
(
ModelBase
):
def
__init__
(
self
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
super
()
.
__init__
(
features
)
self
.
impl
=
LogisticRegressionImpl
(
fit_intercept
=
fit_intercept
,
**
kwargs
)
def
save
(
self
)
->
dict
:
model_desc
=
super
()
.
save
()
model_desc
[
'sklearn_version'
]
=
sklearn_version
model_desc
[
'weight'
]
=
self
.
impl
.
coef_
.
tolist
()
return
model_desc
@
classmethod
def
load
(
cls
,
model_desc
:
dict
):
obj_layout
=
super
()
.
load
(
model_desc
)
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'sklearn_version'
]):
alpha_logger
.
warning
(
'Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
return
obj_layout
@
property
def
weights
(
self
):
return
self
.
impl
.
coef_
.
tolist
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
import
pprint
import
pprint
...
...
alphamind/model/loader.py
View file @
348a9c38
...
@@ -9,6 +9,7 @@ from alphamind.model.modelbase import ModelBase
...
@@ -9,6 +9,7 @@ from alphamind.model.modelbase import ModelBase
from
alphamind.model.linearmodel
import
ConstLinearModel
from
alphamind.model.linearmodel
import
ConstLinearModel
from
alphamind.model.linearmodel
import
LinearRegression
from
alphamind.model.linearmodel
import
LinearRegression
from
alphamind.model.linearmodel
import
LassoRegression
from
alphamind.model.linearmodel
import
LassoRegression
from
alphamind.model.linearmodel
import
LogisticRegression
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
...
@@ -24,6 +25,8 @@ def load_model(model_desc: dict) -> ModelBase:
...
@@ -24,6 +25,8 @@ def load_model(model_desc: dict) -> ModelBase:
return
LinearRegression
.
load
(
model_desc
)
return
LinearRegression
.
load
(
model_desc
)
elif
'LassoRegression'
in
model_name_parts
:
elif
'LassoRegression'
in
model_name_parts
:
return
LassoRegression
.
load
(
model_desc
)
return
LassoRegression
.
load
(
model_desc
)
elif
'LogisticRegression'
in
model_name_parts
:
return
LogisticRegression
.
load
(
model_desc
)
elif
'RandomForestRegressor'
in
model_name_parts
:
elif
'RandomForestRegressor'
in
model_name_parts
:
return
RandomForestRegressor
.
load
(
model_desc
)
return
RandomForestRegressor
.
load
(
model_desc
)
elif
'XGBRegressor'
in
model_name_parts
:
elif
'XGBRegressor'
in
model_name_parts
:
...
...
alphamind/model/treemodel.py
View file @
348a9c38
...
@@ -25,6 +25,7 @@ class RandomForestRegressor(ModelBase):
...
@@ -25,6 +25,7 @@ class RandomForestRegressor(ModelBase):
def
save
(
self
)
->
dict
:
def
save
(
self
)
->
dict
:
model_desc
=
super
()
.
save
()
model_desc
=
super
()
.
save
()
model_desc
[
'sklearn_version'
]
=
sklearn_version
model_desc
[
'sklearn_version'
]
=
sklearn_version
model_desc
[
'importances'
]
=
self
.
importances
return
model_desc
return
model_desc
@
classmethod
@
classmethod
...
@@ -37,6 +38,10 @@ class RandomForestRegressor(ModelBase):
...
@@ -37,6 +38,10 @@ class RandomForestRegressor(ModelBase):
sklearn_version
,
model_desc
[
'sklearn_version'
]))
sklearn_version
,
model_desc
[
'sklearn_version'
]))
return
obj_layout
return
obj_layout
@
property
def
importances
(
self
):
return
self
.
impl
.
feature_importances_
.
tolist
()
class
XGBRegressor
(
ModelBase
):
class
XGBRegressor
(
ModelBase
):
...
@@ -54,6 +59,7 @@ class XGBRegressor(ModelBase):
...
@@ -54,6 +59,7 @@ class XGBRegressor(ModelBase):
def
save
(
self
)
->
dict
:
def
save
(
self
)
->
dict
:
model_desc
=
super
()
.
save
()
model_desc
=
super
()
.
save
()
model_desc
[
'xgbboot_version'
]
=
xgbboot_version
model_desc
[
'xgbboot_version'
]
=
xgbboot_version
model_desc
[
'importances'
]
=
self
.
importances
return
model_desc
return
model_desc
@
classmethod
@
classmethod
...
@@ -66,6 +72,10 @@ class XGBRegressor(ModelBase):
...
@@ -66,6 +72,10 @@ class XGBRegressor(ModelBase):
xgbboot_version
,
model_desc
[
'xgbboot_version'
]))
xgbboot_version
,
model_desc
[
'xgbboot_version'
]))
return
obj_layout
return
obj_layout
@
property
def
importances
(
self
):
return
self
.
impl
.
feature_importances_
.
tolist
()
alphamind/tests/model/test_linearmodel.py
View file @
348a9c38
...
@@ -11,6 +11,8 @@ from sklearn.linear_model import LinearRegression as LinearRegression2
...
@@ -11,6 +11,8 @@ from sklearn.linear_model import LinearRegression as LinearRegression2
from
alphamind.model.loader
import
load_model
from
alphamind.model.loader
import
load_model
from
alphamind.model.linearmodel
import
ConstLinearModel
from
alphamind.model.linearmodel
import
ConstLinearModel
from
alphamind.model.linearmodel
import
LinearRegression
from
alphamind.model.linearmodel
import
LinearRegression
from
sklearn.linear_model
import
LogisticRegression
as
LogisticRegression2
from
alphamind.model.linearmodel
import
LogisticRegression
class
TestLinearModel
(
unittest
.
TestCase
):
class
TestLinearModel
(
unittest
.
TestCase
):
...
@@ -18,7 +20,8 @@ class TestLinearModel(unittest.TestCase):
...
@@ -18,7 +20,8 @@ class TestLinearModel(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
n
=
3
self
.
n
=
3
self
.
train_x
=
np
.
random
.
randn
(
1000
,
self
.
n
)
self
.
train_x
=
np
.
random
.
randn
(
1000
,
self
.
n
)
self
.
train_y
=
np
.
random
.
randn
(
1000
,
1
)
self
.
train_y
=
np
.
random
.
randn
(
1000
)
self
.
train_y_label
=
np
.
where
(
self
.
train_y
>
0.
,
1
,
0
)
self
.
predict_x
=
np
.
random
.
randn
(
10
,
self
.
n
)
self
.
predict_x
=
np
.
random
.
randn
(
10
,
self
.
n
)
def
test_const_linear_model
(
self
):
def
test_const_linear_model
(
self
):
...
@@ -53,6 +56,7 @@ class TestLinearModel(unittest.TestCase):
...
@@ -53,6 +56,7 @@ class TestLinearModel(unittest.TestCase):
expected_y
=
expected_model
.
predict
(
self
.
predict_x
)
expected_y
=
expected_model
.
predict
(
self
.
predict_x
)
np
.
testing
.
assert_array_almost_equal
(
calculated_y
,
expected_y
)
np
.
testing
.
assert_array_almost_equal
(
calculated_y
,
expected_y
)
np
.
testing
.
assert_array_almost_equal
(
expected_model
.
coef_
,
model
.
weights
)
def
test_linear_regression_persistence
(
self
):
def
test_linear_regression_persistence
(
self
):
model
=
LinearRegression
([
'a'
,
'b'
,
'c'
],
fit_intercept
=
False
)
model
=
LinearRegression
([
'a'
,
'b'
,
'c'
],
fit_intercept
=
False
)
...
@@ -65,3 +69,31 @@ class TestLinearModel(unittest.TestCase):
...
@@ -65,3 +69,31 @@ class TestLinearModel(unittest.TestCase):
expected_y
=
model
.
predict
(
self
.
predict_x
)
expected_y
=
model
.
predict
(
self
.
predict_x
)
np
.
testing
.
assert_array_almost_equal
(
calculated_y
,
expected_y
)
np
.
testing
.
assert_array_almost_equal
(
calculated_y
,
expected_y
)
np
.
testing
.
assert_array_almost_equal
(
new_model
.
weights
,
model
.
weights
)
def
test_logistic_regression
(
self
):
model
=
LogisticRegression
([
'a'
,
'b'
,
'c'
],
fit_intercept
=
False
)
model
.
fit
(
self
.
train_x
,
self
.
train_y_label
)
calculated_y
=
model
.
predict
(
self
.
predict_x
)
expected_model
=
LogisticRegression2
(
fit_intercept
=
False
)
expected_model
.
fit
(
self
.
train_x
,
self
.
train_y_label
)
expected_y
=
expected_model
.
predict
(
self
.
predict_x
)
np
.
testing
.
assert_array_equal
(
calculated_y
,
expected_y
)
np
.
testing
.
assert_array_almost_equal
(
expected_model
.
coef_
,
model
.
weights
)
def
test_logistic_regression_persistence
(
self
):
model
=
LinearRegression
([
'a'
,
'b'
,
'c'
],
fit_intercept
=
False
)
model
.
fit
(
self
.
train_x
,
self
.
train_y_label
)
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
calculated_y
=
new_model
.
predict
(
self
.
predict_x
)
expected_y
=
model
.
predict
(
self
.
predict_x
)
np
.
testing
.
assert_array_almost_equal
(
calculated_y
,
expected_y
)
np
.
testing
.
assert_array_almost_equal
(
new_model
.
weights
,
model
.
weights
)
alphamind/utilities.py
View file @
348a9c38
...
@@ -16,6 +16,27 @@ import numba as nb
...
@@ -16,6 +16,27 @@ import numba as nb
alpha_logger
=
CustomLogger
(
'ALPHA_MIND'
,
'info'
)
alpha_logger
=
CustomLogger
(
'ALPHA_MIND'
,
'info'
)
def
map_freq
(
freq
):
if
freq
==
'1m'
:
horizon
=
21
elif
freq
==
'1w'
:
horizon
=
4
elif
freq
==
'2w'
:
horizon
=
9
elif
freq
==
'3w'
:
horizon
=
14
elif
freq
==
'4w'
:
horizon
=
19
elif
freq
==
'1d'
:
horizon
=
0
elif
freq
[
-
1
]
==
"b"
:
horizon
=
int
(
freq
[:
-
1
])
-
1
else
:
raise
ValueError
(
"Unrecognized freq: {0}"
.
format
(
freq
))
return
horizon
def
groupby
(
groups
):
def
groupby
(
groups
):
order
=
groups
.
argsort
()
order
=
groups
.
argsort
()
t
=
groups
[
order
]
t
=
groups
[
order
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment