Commit 3e54d3bc authored by Dr.李's avatar Dr.李

update

parent 38fd0ff5
......@@ -227,6 +227,18 @@ class Performance(Base):
ic = Column(Float(53))
class PnlLog(Base):
__tablename__ = 'pnl_log'
__table_args__ = (
Index('pnl_log_trade_date_portfolio_name_uindex', 'trade_date', 'portfolio_name', unique=True),
)
trade_date = Column(DateTime, primary_key=True, nullable=False)
portfolio_name = Column(String(50), primary_key=True, nullable=False)
excess_return = Column(Float(53))
pct_change = Column(Float(53))
class Positions(Base):
__tablename__ = 'positions'
......@@ -258,6 +270,21 @@ class QuantileAnalysis(Base):
q10 = Column(Float(53))
class RebalanceLog(Base):
__tablename__ = 'rebalance_log'
__table_args__ = (
Index('rebalance_log_trade_date_code_portfolio_name_uindex', 'trade_date', 'code', 'portfolio_name', unique=True
),
)
trade_date = Column(DateTime, primary_key=True, nullable=False)
code = Column(Integer, primary_key=True, nullable=False)
portfolio_name = Column(String(50), primary_key=True, nullable=False)
factor_date = Column(DateTime, nullable=False)
weight = Column(Float(53), nullable=False)
price = Column(Float(53), nullable=False)
class RiskCovDay(Base):
__tablename__ = 'risk_cov_day'
__table_args__ = (
......
......@@ -221,16 +221,16 @@ def fetch_data_package(engine: SqlEngine,
def fetch_train_phase(engine,
alpha_factors: Iterable[object],
ref_date,
frequency,
universe,
batch,
neutralized_risk: Iterable[str] = None,
risk_model: str = 'short',
pre_process: Iterable[object] = None,
post_process: Iterable[object] = None,
warm_start: int = 0):
alpha_factors: Iterable[object],
ref_date,
frequency,
universe,
batch,
neutralized_risk: Iterable[str] = None,
risk_model: str = 'short',
pre_process: Iterable[object] = None,
post_process: Iterable[object] = None,
warm_start: int = 0):
transformer = Transformer(alpha_factors)
p = Period(frequency)
......@@ -290,16 +290,16 @@ def fetch_train_phase(engine,
def fetch_predict_phase(engine,
alpha_factors: Iterable[object],
ref_date,
frequency,
universe,
batch,
neutralized_risk: Iterable[str] = None,
risk_model: str = 'short',
pre_process: Iterable[object] = None,
post_process: Iterable[object] = None,
warm_start: int = 0):
alpha_factors: Iterable[object],
ref_date,
frequency,
universe,
batch,
neutralized_risk: Iterable[str] = None,
risk_model: str = 'short',
pre_process: Iterable[object] = None,
post_process: Iterable[object] = None,
warm_start: int = 0):
transformer = Transformer(alpha_factors)
p = Period(frequency)
......@@ -367,17 +367,6 @@ if __name__ == '__main__':
universe = Universe('zz500', ['ashare_ex'])
neutralized_risk = ['SIZE']
res = fetch_train_phase(engine,
['EPS', 'CFinc1'],
'2017-09-04',
'2w',
universe,
4,
warm_start=1,
neutralized_risk=neutralized_risk)
print(res)
res = fetch_predict_phase(engine,
['EPS', 'CFinc1'],
'2017-09-04',
'2w',
......@@ -388,3 +377,13 @@ if __name__ == '__main__':
print(res)
res = fetch_predict_phase(engine,
['EPS', 'CFinc1'],
'2017-09-04',
'2w',
universe,
4,
warm_start=1,
neutralized_risk=neutralized_risk)
print(res)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment