Commit 40967ae5 authored by Dr.李's avatar Dr.李

update example

parent 165e81c0
......@@ -34,7 +34,7 @@
"industry_lower = 1.0\n",
"industry_upper = 1.0\n",
"method = 'risk_neutral'\n",
"neutralize_risk = ['SIZE'] + industry_styles\n",
"neutralize_risk = industry_styles\n",
"industry_name = 'sw_adj'\n",
"industry_level = 1\n",
"benchmark_total_lower = 0.8\n",
......@@ -62,7 +62,7 @@
"\"\"\"\n",
"\n",
"industry_names = industry_list(industry_name, industry_level)\n",
"constraint_risk = ['SIZE', 'SIZENL', 'BETA']\n",
"constraint_risk = ['SIZE', 'SIZENL', 'BETA'] + industry_names\n",
"total_risk_names = constraint_risk + ['benchmark', 'total']\n",
"\n",
"b_type = []\n",
......@@ -160,7 +160,7 @@
" factor_values = factor_processing(total_data[alpha_name].values,\n",
" pre_process=[winsorize_normal, standardize],\n",
" risk_factors=risk_exp,\n",
" post_process=[winsorize_normal, standardize, rank])\n",
" post_process=[winsorize_normal, standardize])\n",
"\n",
" # const linear model\n",
" er = const_model.predict(pd.DataFrame(data={alpha_name[0]: factor_values.flatten()}))\n",
......@@ -224,8 +224,18 @@
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wall time: 8.86 s\n"
]
}
],
"source": [
"%%time\n",
"\n",
"df = engine.fetch_factor_coverage(start_date='2011-01-01',\n",
" end_date='2018-02-12',\n",
" universe=universe_name[0])\n",
......@@ -236,17 +246,9 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wall time: 1h 25min 5s\n"
]
}
],
"outputs": [],
"source": [
"%%time\n",
"\n",
......@@ -274,7 +276,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
......@@ -287,26 +289,33 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with pd.ExcelWriter(f'{universe_name[0]}_{benchmark_code}.xlsx', engine='xlsxwriter') as writer:\n",
" factor_df.to_excel(writer, sheet_name='ret')\n",
" factor_res.to_excel(writer, sheet_name='ic')\n",
" factor_df.to_excel(writer, sheet_name='ret_stat')\n",
" ic_df.to_excel(writer, sheet_name='ic')\n",
" factor_res.to_excel(writer, sheet_name='ret_stat')\n",
" ic_res.to_excel(writer, sheet_name='ic_stat')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
......
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment