Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
414ed809
Commit
414ed809
authored
May 03, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
restructure
parent
bbb01231
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
218 additions
and
79 deletions
+218
-79
aggregate.py
alphamind/aggregate.py
+139
-0
neutralize.py
alphamind/data/neutralize.py
+1
-1
standardize.py
alphamind/data/standardize.py
+2
-2
winsorize.py
alphamind/data/winsorize.py
+2
-2
groupby.pyx
alphamind/groupby.pyx
+70
-70
rankbuilder.py
alphamind/portfolio/rankbuilder.py
+1
-1
simplesettle.py
alphamind/settlement/simplesettle.py
+2
-2
setup.py
setup.py
+1
-1
No files found.
alphamind/aggregate.py
0 → 100644
View file @
414ed809
# -*- coding: utf-8 -*-
"""
Created on 2017-5-3
@author: cheng.li
"""
import
math
import
numpy
as
np
import
numba
as
nb
@
nb
.
njit
def
agg_sum
(
groups
,
x
):
max_g
=
groups
.
max
()
length
,
width
=
x
.
shape
res
=
np
.
zeros
((
max_g
+
1
,
width
),
dtype
=
np
.
float64
)
for
i
in
range
(
length
):
for
j
in
range
(
width
):
res
[
groups
[
i
],
j
]
+=
x
[
i
,
j
]
return
res
@
nb
.
njit
def
agg_abssum
(
groups
,
x
):
max_g
=
groups
.
max
()
length
,
width
=
x
.
shape
res
=
np
.
zeros
((
max_g
+
1
,
width
),
dtype
=
np
.
float64
)
for
i
in
range
(
length
):
for
j
in
range
(
width
):
res
[
groups
[
i
],
j
]
+=
abs
(
x
[
i
,
j
])
return
res
@
nb
.
njit
def
agg_mean
(
groups
,
x
):
max_g
=
groups
.
max
()
length
,
width
=
x
.
shape
res
=
np
.
zeros
((
max_g
+
1
,
width
),
dtype
=
np
.
float64
)
bin_count
=
np
.
zeros
(
max_g
+
1
,
dtype
=
np
.
int32
)
for
i
in
range
(
length
):
for
j
in
range
(
width
):
res
[
groups
[
i
],
j
]
+=
x
[
i
,
j
]
bin_count
[
groups
[
i
]]
+=
1
for
i
in
range
(
max_g
+
1
):
curr
=
bin_count
[
i
]
for
j
in
range
(
width
):
res
[
i
,
j
]
/=
curr
return
res
@
nb
.
njit
def
agg_std
(
groups
,
x
,
ddof
=
1
):
max_g
=
groups
.
max
()
length
,
width
=
x
.
shape
res
=
np
.
zeros
((
max_g
+
1
,
width
),
dtype
=
np
.
float64
)
sumsq
=
np
.
zeros
((
max_g
+
1
,
width
),
dtype
=
np
.
float64
)
bin_count
=
np
.
zeros
(
max_g
+
1
,
dtype
=
np
.
int32
)
for
i
in
range
(
length
):
for
j
in
range
(
width
):
res
[
groups
[
i
],
j
]
+=
x
[
i
,
j
]
sumsq
[
groups
[
i
],
j
]
+=
x
[
i
,
j
]
*
x
[
i
,
j
]
bin_count
[
groups
[
i
]]
+=
1
for
i
in
range
(
max_g
+
1
):
curr
=
bin_count
[
i
]
for
j
in
range
(
width
):
res
[
i
,
j
]
=
math
.
sqrt
((
sumsq
[
i
,
j
]
-
res
[
i
,
j
]
*
res
[
i
,
j
]
/
curr
)
/
(
curr
-
ddof
))
return
res
@
nb
.
njit
def
set_value
(
groups
,
source
,
destinantion
):
length
,
width
=
destinantion
.
shape
for
i
in
range
(
length
):
k
=
groups
[
i
]
for
j
in
range
(
width
):
destinantion
[
i
,
j
]
=
source
[
k
,
j
]
def
transform
(
groups
,
x
,
func
):
res
=
np
.
zeros_like
(
x
)
if
func
==
'mean'
:
value_data
=
agg_mean
(
groups
,
x
)
elif
func
==
'std'
:
value_data
=
agg_std
(
groups
,
x
,
ddof
=
1
)
elif
func
==
'sum'
:
value_data
=
agg_sum
(
groups
,
x
)
elif
func
==
'abssum'
:
value_data
=
agg_abssum
(
groups
,
x
)
else
:
raise
ValueError
(
'({0}) is not recognized as valid functor'
.
format
(
func
))
set_value
(
groups
,
value_data
,
res
)
return
res
def
aggregate
(
groups
,
x
,
func
):
if
func
==
'mean'
:
value_data
=
agg_mean
(
groups
,
x
)
elif
func
==
'std'
:
value_data
=
agg_std
(
groups
,
x
,
ddof
=
1
)
elif
func
==
'sum'
:
value_data
=
agg_sum
(
groups
,
x
)
elif
func
==
'abssum'
:
value_data
=
agg_abssum
(
groups
,
x
)
else
:
raise
ValueError
(
'({0}) is not recognized as valid functor'
.
format
(
func
))
return
value_data
if
__name__
==
'__main__'
:
n_samples
=
6000
n_features
=
10
n_groups
=
30
groups
=
np
.
random
.
randint
(
n_groups
,
size
=
n_samples
)
max_g
=
n_groups
-
1
x
=
np
.
random
.
randn
(
n_samples
,
n_features
)
import
datetime
as
dt
start
=
dt
.
datetime
.
now
()
for
i
in
range
(
1000
):
res
=
aggregate
(
groups
,
x
,
'mean'
)
print
(
dt
.
datetime
.
now
()
-
start
)
#transform = nb.jit(transform)
start
=
dt
.
datetime
.
now
()
for
i
in
range
(
1000
):
res
=
aggregate
(
groups
,
x
,
'mean'
)
print
(
dt
.
datetime
.
now
()
-
start
)
\ No newline at end of file
alphamind/data/neutralize.py
View file @
414ed809
...
@@ -11,7 +11,7 @@ from numpy.linalg import solve
...
@@ -11,7 +11,7 @@ from numpy.linalg import solve
from
typing
import
Tuple
from
typing
import
Tuple
from
typing
import
Union
from
typing
import
Union
from
typing
import
Dict
from
typing
import
Dict
from
alphamind.
aggregate
import
groupby
from
alphamind.
groupby
import
groupby
def
neutralize
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
,
output_explained
=
False
,
output_exposure
=
False
)
\
def
neutralize
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
,
output_explained
=
False
,
output_exposure
=
False
)
\
...
...
alphamind/data/standardize.py
View file @
414ed809
...
@@ -6,8 +6,8 @@ Created on 2017-4-25
...
@@ -6,8 +6,8 @@ Created on 2017-4-25
"""
"""
import
numpy
as
np
import
numpy
as
np
from
alphamind.
aggregate
import
group_mapping
from
alphamind.
groupby
import
group_mapping
from
alphamind.
impl
import
transform
from
alphamind.
aggregate
import
transform
def
standardize
(
x
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
)
->
np
.
ndarray
:
def
standardize
(
x
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
)
->
np
.
ndarray
:
...
...
alphamind/data/winsorize.py
View file @
414ed809
...
@@ -6,8 +6,8 @@ Created on 2017-4-25
...
@@ -6,8 +6,8 @@ Created on 2017-4-25
"""
"""
import
numpy
as
np
import
numpy
as
np
from
alphamind.
aggregate
import
group_mapping
from
alphamind.
groupby
import
group_mapping
from
alphamind.
impl
import
transform
from
alphamind.
aggregate
import
transform
def
winsorize_normal
(
x
:
np
.
ndarray
,
num_stds
:
int
=
3
,
groups
:
np
.
ndarray
=
None
)
->
np
.
ndarray
:
def
winsorize_normal
(
x
:
np
.
ndarray
,
num_stds
:
int
=
3
,
groups
:
np
.
ndarray
=
None
)
->
np
.
ndarray
:
...
...
alphamind/
aggregate
.pyx
→
alphamind/
groupby
.pyx
View file @
414ed809
alphamind/portfolio/rankbuilder.py
View file @
414ed809
...
@@ -8,7 +8,7 @@ Created on 2017-4-26
...
@@ -8,7 +8,7 @@ Created on 2017-4-26
import
numpy
as
np
import
numpy
as
np
import
numba
as
nb
import
numba
as
nb
from
numpy
import
zeros
from
numpy
import
zeros
from
alphamind.
aggregate
import
groupby
from
alphamind.
groupby
import
groupby
@
nb
.
njit
@
nb
.
njit
...
...
alphamind/settlement/simplesettle.py
View file @
414ed809
...
@@ -6,8 +6,8 @@ Created on 2017-4-28
...
@@ -6,8 +6,8 @@ Created on 2017-4-28
"""
"""
import
numpy
as
np
import
numpy
as
np
from
alphamind.
aggregate
import
group_mapping
from
alphamind.
groupby
import
group_mapping
from
alphamind.
impl
import
aggregate
from
alphamind.
aggregate
import
aggregate
def
simple_settle
(
weights
:
np
.
ndarray
,
ret_series
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
)
->
np
.
ndarray
:
def
simple_settle
(
weights
:
np
.
ndarray
,
ret_series
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
)
->
np
.
ndarray
:
...
...
setup.py
View file @
414ed809
...
@@ -25,7 +25,7 @@ else:
...
@@ -25,7 +25,7 @@ else:
line_trace
=
False
line_trace
=
False
ext_modules
=
[
'alphamind/
aggregate
.pyx'
]
ext_modules
=
[
'alphamind/
groupby
.pyx'
]
def
generate_extensions
(
ext_modules
,
line_trace
=
False
):
def
generate_extensions
(
ext_modules
,
line_trace
=
False
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment