Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
4517ca55
Commit
4517ca55
authored
Apr 13, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
dropna value
parent
ed1f44d9
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
5 additions
and
2 deletions
+5
-2
sqlengine.py
alphamind/data/engines/sqlengine.py
+1
-1
data_preparing.py
alphamind/model/data_preparing.py
+4
-1
No files found.
alphamind/data/engines/sqlengine.py
View file @
4517ca55
...
...
@@ -481,7 +481,7 @@ class SqlEngine(object):
)
df
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
([
'trade_date'
,
'code'
])
return
df
return
pd
.
merge
(
df
,
codes
[[
'trade_date'
,
'code'
]],
how
=
'inner'
)
def
fetch_benchmark
(
self
,
ref_date
:
str
,
...
...
alphamind/model/data_preparing.py
View file @
4517ca55
...
...
@@ -106,6 +106,7 @@ def prepare_data(engine: SqlEngine,
df
=
pd
.
merge
(
df
,
benchmark_df
,
on
=
[
'trade_date'
,
'code'
],
how
=
'left'
)
df
=
pd
.
merge
(
df
,
industry_df
,
on
=
[
'trade_date'
,
'code'
])
df
[
'weight'
]
=
df
[
'weight'
]
.
fillna
(
0.
)
df
.
dropna
(
inplace
=
True
)
return
dates
,
df
[[
'trade_date'
,
'code'
,
'dx'
]],
df
[
[
'trade_date'
,
'code'
,
'weight'
,
'isOpen'
,
'industry_code'
,
'industry'
]
+
transformer
.
names
]
...
...
@@ -400,8 +401,10 @@ def fetch_predict_phase(engine,
else
:
train_x
=
pd
.
merge
(
factor_df
,
target_df
,
on
=
[
'trade_date'
,
'code'
],
how
=
'left'
)
risk_exp
=
None
train_x
.
dropna
(
inplace
=
True
)
x_values
=
train_x
[
names
]
.
values
.
astype
(
float
)
y_values
=
train_x
[
'dx'
]
.
values
.
astype
(
float
)
y_values
=
train_x
[
[
'dx'
]
]
.
values
.
astype
(
float
)
date_label
=
pd
.
DatetimeIndex
(
train_x
.
trade_date
)
.
to_pydatetime
()
dates
=
np
.
unique
(
date_label
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment