Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
4ad392f5
Commit
4ad392f5
authored
Mar 26, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
depreciated usage of full factor table
parent
55e8b676
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
71 additions
and
38 deletions
+71
-38
sqlengine.py
alphamind/data/engines/sqlengine.py
+61
-33
utilities.py
alphamind/data/engines/utilities.py
+10
-5
No files found.
alphamind/data/engines/sqlengine.py
View file @
4ad392f5
...
...
@@ -24,7 +24,6 @@ from alphamind.data.dbmodel.models import IndexComponent
from
alphamind.data.dbmodel.models
import
Industry
from
alphamind.data.dbmodel.models
import
Experimental
from
alphamind.data.dbmodel.models
import
RiskMaster
from
alphamind.data.dbmodel.models
import
FullFactor
from
alphamind.data.dbmodel.models
import
Models
from
alphamind.data.dbmodel.models
import
Market
from
alphamind.data.dbmodel.models
import
IndexMarket
...
...
@@ -34,6 +33,7 @@ from alphamind.data.dbmodel.models import DailyPortfoliosSchedule
from
alphamind.data.dbmodel.models
import
Performance
from
alphamind.data.dbmodel.models
import
Positions
from
alphamind.data.dbmodel.models
import
Outright
from
alphamind.data.dbmodel.models
import
RiskExposure
from
alphamind.data.transformer
import
Transformer
from
alphamind.model.loader
import
load_model
from
alphamind.formula.utilities
import
encode_formula
...
...
@@ -339,17 +339,21 @@ class SqlEngine(object):
start_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
str
(
-
warm_start
)
+
'b'
)
.
strftime
(
'
%
Y-
%
m-
%
d'
)
end_date
=
ref_date
big_table
=
FullFactor
big_table
=
Market
joined_tables
=
set
()
joined_tables
.
add
(
Market
.
__table__
.
name
)
for
t
in
set
(
factor_cols
.
values
()):
if
t
.
__table__
.
name
!=
FullFactor
.
__table__
.
name
:
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
FullFactor
.
trade_date
==
t
.
trade_date
,
FullFactor
.
code
==
t
.
code
))
if
t
.
__table__
.
name
not
in
joined_tables
:
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
Market
.
trade_date
==
t
.
trade_date
,
Market
.
code
==
t
.
code
))
joined_tables
.
add
(
t
.
__table__
.
name
)
query
=
select
(
[
FullFactor
.
trade_date
,
FullFactor
.
code
,
FullFactor
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
.
select_from
(
big_table
)
.
where
(
and_
(
FullFactor
.
trade_date
.
between
(
start_date
,
end_date
),
FullFactor
.
code
.
in_
(
codes
)))
[
Market
.
trade_date
,
Market
.
code
,
Market
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
.
select_from
(
big_table
)
.
where
(
and_
(
Market
.
trade_date
.
between
(
start_date
,
end_date
),
Market
.
code
.
in_
(
codes
)))
df
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
([
'trade_date'
,
'code'
])
.
set_index
(
'trade_date'
)
res
=
transformer
.
transform
(
'code'
,
df
)
...
...
@@ -384,30 +388,30 @@ class SqlEngine(object):
else
:
factor_cols
=
_map_factors
(
dependency
,
factor_tables
)
big_table
=
FullFactor
big_table
=
Market
joined_tables
=
set
()
joined_tables
.
add
(
FullFactor
.
__table__
.
name
)
joined_tables
.
add
(
Market
.
__table__
.
name
)
for
t
in
set
(
factor_cols
.
values
()):
if
t
.
__table__
.
name
not
in
joined_tables
:
if
dates
is
not
None
:
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
FullFactor
.
trade_date
==
t
.
trade_date
,
FullFactor
.
code
==
t
.
code
,
FullFactor
.
trade_date
.
in_
(
dates
)))
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
Market
.
trade_date
==
t
.
trade_date
,
Market
.
code
==
t
.
code
,
Market
.
trade_date
.
in_
(
dates
)))
else
:
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
FullFactor
.
trade_date
==
t
.
trade_date
,
FullFactor
.
code
==
t
.
code
,
FullFactor
.
trade_date
.
between
(
start_date
,
end_date
)))
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
Market
.
trade_date
==
t
.
trade_date
,
Market
.
code
==
t
.
code
,
Market
.
trade_date
.
between
(
start_date
,
end_date
)))
joined_tables
.
add
(
t
.
__table__
.
name
)
universe_df
=
universe
.
query
(
self
,
start_date
,
end_date
,
dates
)
query
=
select
(
[
FullFactor
.
trade_date
,
FullFactor
.
code
,
FullFactor
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
[
Market
.
trade_date
,
Market
.
code
,
Market
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
.
select_from
(
big_table
)
.
where
(
and_
(
FullFactor
.
code
.
in_
(
universe_df
.
code
.
unique
()
.
tolist
()),
FullFactor
.
trade_date
.
in_
(
dates
)
if
dates
is
not
None
else
FullFactor
.
trade_date
.
between
(
start_date
,
end_date
)
Market
.
code
.
in_
(
universe_df
.
code
.
unique
()
.
tolist
()),
Market
.
trade_date
.
in_
(
dates
)
if
dates
is
not
None
else
Market
.
trade_date
.
between
(
start_date
,
end_date
)
)
)
.
distinct
()
...
...
@@ -473,7 +477,7 @@ class SqlEngine(object):
codes
:
Iterable
[
int
],
risk_model
:
str
=
'short'
,
excluded
:
Iterable
[
str
]
=
None
)
->
Tuple
[
pd
.
DataFrame
,
pd
.
DataFrame
]:
risk_cov_table
,
special_risk_
col
=
_map_risk_model_table
(
risk_model
)
risk_cov_table
,
special_risk_
table
=
_map_risk_model_table
(
risk_model
)
cov_risk_cols
=
[
risk_cov_table
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
]
query
=
select
([
risk_cov_table
.
FactorID
,
...
...
@@ -484,12 +488,22 @@ class SqlEngine(object):
risk_cov
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
(
'FactorID'
)
if
excluded
:
risk_exposure_cols
=
[
FullFactor
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
if
f
not
in
set
(
excluded
)]
risk_exposure_cols
=
[
RiskExposure
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
if
f
not
in
set
(
excluded
)]
else
:
risk_exposure_cols
=
[
FullFactor
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
]
risk_exposure_cols
=
[
RiskExposure
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
]
query
=
select
([
FullFactor
.
code
,
special_risk_col
]
+
risk_exposure_cols
)
\
.
where
(
and_
(
FullFactor
.
trade_date
==
ref_date
,
FullFactor
.
code
.
in_
(
codes
)))
.
distinct
()
big_table
=
join
(
RiskExposure
,
special_risk_table
,
and_
(
RiskExposure
.
code
==
special_risk_table
.
code
,
RiskExposure
.
trade_date
==
special_risk_table
.
trade_date
))
query
=
select
([
RiskExposure
.
code
,
special_risk_table
.
SRISK
.
label
(
'srisk'
)]
+
risk_exposure_cols
)
\
.
select_from
(
big_table
)
.
where
(
and_
(
RiskExposure
.
trade_date
==
ref_date
,
RiskExposure
.
code
.
in_
(
codes
)
))
.
distinct
()
risk_exp
=
pd
.
read_sql
(
query
,
self
.
engine
)
...
...
@@ -503,7 +517,7 @@ class SqlEngine(object):
risk_model
:
str
=
'short'
,
excluded
:
Iterable
[
str
]
=
None
)
->
Tuple
[
pd
.
DataFrame
,
pd
.
DataFrame
]:
risk_cov_table
,
special_risk_
col
=
_map_risk_model_table
(
risk_model
)
risk_cov_table
,
special_risk_
table
=
_map_risk_model_table
(
risk_model
)
cov_risk_cols
=
[
risk_cov_table
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
]
...
...
@@ -521,23 +535,32 @@ class SqlEngine(object):
if
not
excluded
:
excluded
=
[]
risk_exposure_cols
=
[
FullFactor
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
if
f
not
in
set
(
excluded
)]
risk_exposure_cols
=
[
RiskExposure
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
if
f
not
in
set
(
excluded
)]
cond
=
universe
.
_query_statements
(
start_date
,
end_date
,
dates
)
big_table
=
join
(
FullFactor
,
UniverseTable
,
big_table
=
join
(
RiskExposure
,
UniverseTable
,
and_
(
FullFactor
.
trade_date
==
UniverseTable
.
trade_date
,
FullFactor
.
code
==
UniverseTable
.
code
,
RiskExposure
.
trade_date
==
UniverseTable
.
trade_date
,
RiskExposure
.
code
==
UniverseTable
.
code
,
cond
)
)
big_table
=
join
(
special_risk_table
,
big_table
,
and_
(
RiskExposure
.
code
==
special_risk_table
.
code
,
RiskExposure
.
trade_date
==
special_risk_table
.
trade_date
,
))
query
=
select
(
[
FullFactor
.
trade_date
,
FullFactor
.
code
,
special_risk_col
]
+
risk_exposure_cols
)
.
select_from
(
big_table
)
\
[
RiskExposure
.
trade_date
,
RiskExposure
.
code
,
special_risk_table
.
SRISK
.
label
(
'srisk'
)]
+
risk_exposure_cols
)
.
select_from
(
big_table
)
\
.
distinct
()
risk_exp
=
pd
.
read_sql
(
query
,
self
.
engine
)
risk_exp
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
([
'trade_date'
,
'code'
])
if
universe
.
is_filtered
:
codes
=
universe
.
query
(
self
,
start_date
,
end_date
,
dates
)
...
...
@@ -674,7 +697,7 @@ class SqlEngine(object):
factor_data
=
self
.
fetch_factor
(
ref_date
,
transformer
,
codes
,
used_factor_tables
=
[
FullFactor
,
Experimental
]
)
used_factor_tables
=
factor_tables
)
if
benchmark
:
benchmark_data
=
self
.
fetch_benchmark
(
ref_date
,
benchmark
)
...
...
@@ -964,5 +987,10 @@ if __name__ == '__main__':
ref_date
=
'2017-06-29'
universe
=
Universe
(
''
,
[
'zz800'
])
codes
=
engine
.
fetch_codes
(
ref_date
,
universe
)
dates
=
makeSchedule
(
'2010-01-01'
,
'2018-02-01'
,
'10b'
,
'china.sse'
)
df
=
engine
.
fetch_factor_range
(
universe
,
DIFF
(
'roe_q'
),
dates
=
dates
)
# df = engine.fetch_factor_range(universe, DIFF('roe_q'), dates=dates)
risk_cov
,
risk_exposure
=
engine
.
fetch_risk_model
(
ref_date
,
codes
)
factor_data
=
engine
.
fetch_factor_range
(
universe
,
[
'roe_q'
],
dates
=
dates
)
risk_cov
,
risk_exposure
=
engine
.
fetch_risk_model_range
(
universe
,
dates
=
dates
)
alphamind/data/engines/utilities.py
View file @
4ad392f5
...
...
@@ -10,22 +10,27 @@ from typing import Dict
from
alphamind.data.dbmodel.models
import
RiskCovDay
from
alphamind.data.dbmodel.models
import
RiskCovShort
from
alphamind.data.dbmodel.models
import
RiskCovLong
from
alphamind.data.dbmodel.models
import
FullFactor
from
alphamind.data.dbmodel.models
import
SpecificRiskDay
from
alphamind.data.dbmodel.models
import
SpecificRiskShort
from
alphamind.data.dbmodel.models
import
SpecificRiskLong
from
alphamind.data.dbmodel.models
import
Uqer
from
alphamind.data.dbmodel.models
import
Gogoal
from
alphamind.data.dbmodel.models
import
Experimental
from
alphamind.data.dbmodel.models
import
LegacyFactor
from
alphamind.data.dbmodel.models
import
Tiny
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
factor_tables
=
[
FullFactor
,
Gogoal
,
Experimental
]
factor_tables
=
[
Uqer
,
Gogoal
,
Experimental
,
LegacyFactor
,
Tiny
]
def
_map_risk_model_table
(
risk_model
:
str
)
->
tuple
:
if
risk_model
==
'day'
:
return
RiskCovDay
,
FullFactor
.
d_srisk
return
RiskCovDay
,
SpecificRiskDay
elif
risk_model
==
'short'
:
return
RiskCovShort
,
FullFactor
.
s_srisk
return
RiskCovShort
,
SpecificRiskShort
elif
risk_model
==
'long'
:
return
RiskCovLong
,
FullFactor
.
l_srisk
return
RiskCovLong
,
SpecificRiskLong
else
:
raise
ValueError
(
"risk model name {0} is not recognized"
.
format
(
risk_model
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment