Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
51af0796
Commit
51af0796
authored
Jan 07, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
reformat
parent
348a9c38
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
17 additions
and
17 deletions
+17
-17
linearmodel.py
alphamind/model/linearmodel.py
+13
-13
treemodel.py
alphamind/model/treemodel.py
+4
-4
No files found.
alphamind/model/linearmodel.py
View file @
51af0796
...
...
@@ -18,7 +18,7 @@ from alphamind.utilities import alpha_logger
class
ConstLinearModelImpl
(
object
):
def
__init__
(
self
,
weights
:
np
.
ndarray
=
None
):
def
__init__
(
self
,
weights
:
np
.
ndarray
=
None
):
self
.
weights
=
np
.
array
(
weights
)
.
flatten
()
def
fit
(
self
,
x
:
np
.
ndarray
,
y
:
np
.
ndarray
):
...
...
@@ -31,8 +31,8 @@ class ConstLinearModelImpl(object):
class
ConstLinearModel
(
ModelBase
):
def
__init__
(
self
,
features
:
list
=
None
,
weights
:
np
.
ndarray
=
None
):
features
:
list
=
None
,
weights
:
np
.
ndarray
=
None
):
super
()
.
__init__
(
features
)
if
features
is
not
None
and
weights
is
not
None
:
pyFinAssert
(
len
(
features
)
==
len
(
weights
),
...
...
@@ -56,7 +56,7 @@ class ConstLinearModel(ModelBase):
class
LinearRegression
(
ModelBase
):
def
__init__
(
self
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
def
__init__
(
self
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
super
()
.
__init__
(
features
)
self
.
impl
=
LinearRegressionImpl
(
fit_intercept
=
fit_intercept
,
**
kwargs
)
self
.
trained_time
=
None
...
...
@@ -73,8 +73,8 @@ class LinearRegression(ModelBase):
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'sklearn_version'
]):
alpha_logger
.
warning
(
'Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
return
obj_layout
@
property
...
...
@@ -84,7 +84,7 @@ class LinearRegression(ModelBase):
class
LassoRegression
(
ModelBase
):
def
__init__
(
self
,
alpha
=
0.01
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
def
__init__
(
self
,
alpha
=
0.01
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
super
()
.
__init__
(
features
)
self
.
impl
=
Lasso
(
alpha
=
alpha
,
fit_intercept
=
fit_intercept
,
**
kwargs
)
self
.
trained_time
=
None
...
...
@@ -101,8 +101,8 @@ class LassoRegression(ModelBase):
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'sklearn_version'
]):
alpha_logger
.
warning
(
'Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
return
obj_layout
@
property
...
...
@@ -112,7 +112,7 @@ class LassoRegression(ModelBase):
class
LogisticRegression
(
ModelBase
):
def
__init__
(
self
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
def
__init__
(
self
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
super
()
.
__init__
(
features
)
self
.
impl
=
LogisticRegressionImpl
(
fit_intercept
=
fit_intercept
,
**
kwargs
)
...
...
@@ -128,8 +128,8 @@ class LogisticRegression(ModelBase):
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'sklearn_version'
]):
alpha_logger
.
warning
(
'Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
return
obj_layout
@
property
...
...
@@ -138,8 +138,8 @@ class LogisticRegression(ModelBase):
if
__name__
==
'__main__'
:
import
pprint
ls
=
ConstLinearModel
([
'a'
,
'b'
],
np
.
array
([
0.5
,
0.5
]))
x
=
np
.
array
([[
0.2
,
0.2
],
...
...
alphamind/model/treemodel.py
View file @
51af0796
...
...
@@ -34,8 +34,8 @@ class RandomForestRegressor(ModelBase):
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'sklearn_version'
]):
alpha_logger
.
warning
(
'Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
'Loaded model may work incorrectly.'
.
format
(
sklearn_version
,
model_desc
[
'sklearn_version'
]))
return
obj_layout
@
property
...
...
@@ -68,8 +68,8 @@ class XGBRegressor(ModelBase):
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'xgbboot_version'
]):
alpha_logger
.
warning
(
'Current xgboost version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
xgbboot_version
,
model_desc
[
'xgbboot_version'
]))
'Loaded model may work incorrectly.'
.
format
(
xgbboot_version
,
model_desc
[
'xgbboot_version'
]))
return
obj_layout
@
property
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment