Commit 51af0796 authored by Dr.李's avatar Dr.李

reformat

parent 348a9c38
...@@ -18,7 +18,7 @@ from alphamind.utilities import alpha_logger ...@@ -18,7 +18,7 @@ from alphamind.utilities import alpha_logger
class ConstLinearModelImpl(object): class ConstLinearModelImpl(object):
def __init__(self, weights: np.ndarray=None): def __init__(self, weights: np.ndarray = None):
self.weights = np.array(weights).flatten() self.weights = np.array(weights).flatten()
def fit(self, x: np.ndarray, y: np.ndarray): def fit(self, x: np.ndarray, y: np.ndarray):
...@@ -31,8 +31,8 @@ class ConstLinearModelImpl(object): ...@@ -31,8 +31,8 @@ class ConstLinearModelImpl(object):
class ConstLinearModel(ModelBase): class ConstLinearModel(ModelBase):
def __init__(self, def __init__(self,
features: list=None, features: list = None,
weights: np.ndarray=None): weights: np.ndarray = None):
super().__init__(features) super().__init__(features)
if features is not None and weights is not None: if features is not None and weights is not None:
pyFinAssert(len(features) == len(weights), pyFinAssert(len(features) == len(weights),
...@@ -56,7 +56,7 @@ class ConstLinearModel(ModelBase): ...@@ -56,7 +56,7 @@ class ConstLinearModel(ModelBase):
class LinearRegression(ModelBase): class LinearRegression(ModelBase):
def __init__(self, features: list=None, fit_intercept: bool=False, **kwargs): def __init__(self, features: list = None, fit_intercept: bool = False, **kwargs):
super().__init__(features) super().__init__(features)
self.impl = LinearRegressionImpl(fit_intercept=fit_intercept, **kwargs) self.impl = LinearRegressionImpl(fit_intercept=fit_intercept, **kwargs)
self.trained_time = None self.trained_time = None
...@@ -73,8 +73,8 @@ class LinearRegression(ModelBase): ...@@ -73,8 +73,8 @@ class LinearRegression(ModelBase):
if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']): if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']):
alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. ' alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'.format( 'Loaded model may work incorrectly.'.format(sklearn_version,
sklearn_version, model_desc['sklearn_version'])) model_desc['sklearn_version']))
return obj_layout return obj_layout
@property @property
...@@ -84,7 +84,7 @@ class LinearRegression(ModelBase): ...@@ -84,7 +84,7 @@ class LinearRegression(ModelBase):
class LassoRegression(ModelBase): class LassoRegression(ModelBase):
def __init__(self, alpha=0.01, features: list=None, fit_intercept: bool=False, **kwargs): def __init__(self, alpha=0.01, features: list = None, fit_intercept: bool = False, **kwargs):
super().__init__(features) super().__init__(features)
self.impl = Lasso(alpha=alpha, fit_intercept=fit_intercept, **kwargs) self.impl = Lasso(alpha=alpha, fit_intercept=fit_intercept, **kwargs)
self.trained_time = None self.trained_time = None
...@@ -101,8 +101,8 @@ class LassoRegression(ModelBase): ...@@ -101,8 +101,8 @@ class LassoRegression(ModelBase):
if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']): if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']):
alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. ' alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'.format( 'Loaded model may work incorrectly.'.format(sklearn_version,
sklearn_version, model_desc['sklearn_version'])) model_desc['sklearn_version']))
return obj_layout return obj_layout
@property @property
...@@ -112,7 +112,7 @@ class LassoRegression(ModelBase): ...@@ -112,7 +112,7 @@ class LassoRegression(ModelBase):
class LogisticRegression(ModelBase): class LogisticRegression(ModelBase):
def __init__(self, features: list=None, fit_intercept: bool=False, **kwargs): def __init__(self, features: list = None, fit_intercept: bool = False, **kwargs):
super().__init__(features) super().__init__(features)
self.impl = LogisticRegressionImpl(fit_intercept=fit_intercept, **kwargs) self.impl = LogisticRegressionImpl(fit_intercept=fit_intercept, **kwargs)
...@@ -128,8 +128,8 @@ class LogisticRegression(ModelBase): ...@@ -128,8 +128,8 @@ class LogisticRegression(ModelBase):
if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']): if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']):
alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. ' alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'.format( 'Loaded model may work incorrectly.'.format(sklearn_version,
sklearn_version, model_desc['sklearn_version'])) model_desc['sklearn_version']))
return obj_layout return obj_layout
@property @property
...@@ -138,8 +138,8 @@ class LogisticRegression(ModelBase): ...@@ -138,8 +138,8 @@ class LogisticRegression(ModelBase):
if __name__ == '__main__': if __name__ == '__main__':
import pprint import pprint
ls = ConstLinearModel(['a', 'b'], np.array([0.5, 0.5])) ls = ConstLinearModel(['a', 'b'], np.array([0.5, 0.5]))
x = np.array([[0.2, 0.2], x = np.array([[0.2, 0.2],
......
...@@ -34,8 +34,8 @@ class RandomForestRegressor(ModelBase): ...@@ -34,8 +34,8 @@ class RandomForestRegressor(ModelBase):
if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']): if LooseVersion(sklearn_version) < LooseVersion(model_desc['sklearn_version']):
alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. ' alpha_logger.warning('Current sklearn version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'.format( 'Loaded model may work incorrectly.'.format(sklearn_version,
sklearn_version, model_desc['sklearn_version'])) model_desc['sklearn_version']))
return obj_layout return obj_layout
@property @property
...@@ -68,8 +68,8 @@ class XGBRegressor(ModelBase): ...@@ -68,8 +68,8 @@ class XGBRegressor(ModelBase):
if LooseVersion(sklearn_version) < LooseVersion(model_desc['xgbboot_version']): if LooseVersion(sklearn_version) < LooseVersion(model_desc['xgbboot_version']):
alpha_logger.warning('Current xgboost version {0} is lower than the model version {1}. ' alpha_logger.warning('Current xgboost version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'.format( 'Loaded model may work incorrectly.'.format(xgbboot_version,
xgbboot_version, model_desc['xgbboot_version'])) model_desc['xgbboot_version']))
return obj_layout return obj_layout
@property @property
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment