Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
5c4eef61
Commit
5c4eef61
authored
May 25, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added factor data packet structure
parent
c9c2c89c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
75 additions
and
14 deletions
+75
-14
calculators.py
alphamind/analysis/calculators.py
+1
-1
factoranalysis.py
alphamind/analysis/factoranalysis.py
+74
-13
No files found.
alphamind/analysis/calculators.py
View file @
5c4eef61
...
@@ -8,7 +8,7 @@ Created on 2017-5-18
...
@@ -8,7 +8,7 @@ Created on 2017-5-18
import
pandas
as
pd
import
pandas
as
pd
def
calculate_turn_over
(
pos_table
)
:
def
calculate_turn_over
(
pos_table
:
pd
.
DataFrame
)
->
pd
.
DataFrame
:
turn_over_table
=
{}
turn_over_table
=
{}
total_factors
=
pos_table
.
columns
.
difference
([
'Code'
])
total_factors
=
pos_table
.
columns
.
difference
([
'Code'
])
pos_table
.
reset_index
()
pos_table
.
reset_index
()
...
...
alphamind/analysis/factoranalysis.py
View file @
5c4eef61
...
@@ -5,9 +5,10 @@ Created on 2017-5-25
...
@@ -5,9 +5,10 @@ Created on 2017-5-25
@author: cheng.li
@author: cheng.li
"""
"""
import
numpy
as
np
from
typing
import
Optional
from
typing
import
Optional
from
typing
import
List
from
typing
import
List
import
numpy
as
np
import
pandas
as
pd
from
alphamind.data.neutralize
import
neutralize
from
alphamind.data.neutralize
import
neutralize
from
alphamind.portfolio.longshortbulder
import
long_short_build
from
alphamind.portfolio.longshortbulder
import
long_short_build
from
alphamind.portfolio.rankbuilder
import
rank_build
from
alphamind.portfolio.rankbuilder
import
rank_build
...
@@ -37,13 +38,13 @@ def build_portfolio(er: np.ndarray,
...
@@ -37,13 +38,13 @@ def build_portfolio(er: np.ndarray,
builder
=
builder
.
lower
()
builder
=
builder
.
lower
()
if
builder
==
'long_short'
:
if
builder
==
'l
s'
or
builder
==
'l
ong_short'
:
return
long_short_build
(
er
,
**
kwargs
)
return
long_short_build
(
er
,
**
kwargs
)
elif
builder
==
'rank'
:
elif
builder
==
'rank'
:
return
rank_build
(
er
,
**
kwargs
)
return
rank_build
(
er
,
**
kwargs
)
elif
builder
==
'percent
_build
'
:
elif
builder
==
'percent'
:
return
percent_build
(
er
,
**
kwargs
)
return
percent_build
(
er
,
**
kwargs
)
elif
builder
==
'linear_prog'
:
elif
builder
==
'linear_prog'
or
builder
==
'linear'
:
status
,
_
,
weight
=
linear_build
(
er
,
**
kwargs
)
status
,
_
,
weight
=
linear_build
(
er
,
**
kwargs
)
if
status
!=
'optimal'
:
if
status
!=
'optimal'
:
raise
ValueError
(
'linear programming optimizer in status: {0}'
.
format
(
status
))
raise
ValueError
(
'linear programming optimizer in status: {0}'
.
format
(
status
))
...
@@ -51,18 +52,78 @@ def build_portfolio(er: np.ndarray,
...
@@ -51,18 +52,78 @@ def build_portfolio(er: np.ndarray,
return
weight
return
weight
if
__name__
==
'__main__'
:
class
FDataPack
(
object
):
def
__init__
(
self
,
raw_factor
:
np
.
ndarray
,
factor_name
:
str
=
None
,
codes
:
List
=
None
,
groups
:
Optional
[
np
.
ndarray
]
=
None
,
benchmark
:
Optional
[
np
.
ndarray
]
=
None
,
risk_exp
:
Optional
[
np
.
ndarray
]
=
None
,
risk_names
:
List
[
str
]
=
None
):
self
.
raw_factor
=
raw_factor
if
factor_name
:
self
.
factor_name
=
factor_name
else
:
self
.
factor_name
=
'factor'
self
.
codes
=
codes
self
.
groups
=
groups
self
.
benchmark
=
benchmark
self
.
risk_exp
=
risk_exp
self
.
risk_names
=
risk_names
def
benchmark_risk_exp
(
self
)
->
np
.
ndarray
:
return
self
.
risk_exp
@
self
.
benchmark
def
factor_processing
(
self
,
pre_process
)
->
np
.
ndarray
:
if
self
.
risk_exp
is
None
:
return
factor_processing
(
self
.
raw_factor
,
pre_process
)
else
:
return
factor_processing
(
self
.
raw_factor
,
pre_process
,
self
.
risk_exp
)
def
to_df
(
self
)
->
pd
.
DataFrame
:
cols
=
[
self
.
factor_name
]
to_concat
=
[
self
.
raw_factor
]
if
self
.
groups
is
not
None
:
cols
.
append
(
'groups'
)
to_concat
.
append
(
self
.
groups
.
reshape
(
-
1
,
1
))
if
self
.
benchmark
is
not
None
:
cols
.
append
(
'benchmark'
)
to_concat
.
append
(
self
.
benchmark
)
if
self
.
risk_exp
is
not
None
:
cols
.
extend
(
self
.
risk_names
)
to_concat
.
append
(
self
.
risk_exp
)
from
alphamind.data.standardize
import
standardize
return
pd
.
DataFrame
(
np
.
concatenate
(
to_concat
,
axis
=
1
),
from
alphamind.data.winsorize
import
winsorize_normal
columns
=
cols
,
index
=
self
.
codes
)
if
__name__
==
'__main__'
:
raw_factor
=
np
.
random
.
randn
(
1000
,
1
)
raw_factor
=
np
.
random
.
randn
(
1000
,
1
)
pre_process
=
[
winsorize_normal
,
standardize
]
groups
=
np
.
random
.
randint
(
30
,
size
=
1000
)
benchmark
=
np
.
random
.
randn
(
1000
,
1
)
risk_exp
=
np
.
random
.
randn
(
1000
,
3
)
codes
=
list
(
range
(
1
,
1001
))
data_pack
=
FDataPack
(
raw_factor
,
'cfinc1'
,
codes
=
codes
,
groups
=
groups
,
benchmark
=
benchmark
,
risk_exp
=
risk_exp
,
risk_names
=
[
'market'
,
'size'
,
'growth'
])
print
(
data_pack
.
to_df
())
risk_factors
=
np
.
ones
((
1000
,
1
))
new_factor
=
factor_processing
(
raw_factor
,
pre_process
,
risk_factors
)
print
(
new_factor
.
sum
())
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment