Commit 5ce84621 authored by Dr.李's avatar Dr.李

update models

parent e26a7d97
......@@ -66,9 +66,6 @@ class LinearRegression(ModelBase):
model_desc['weight'] = self.impl.coef_.tolist()
return model_desc
def score(self, x: np.ndarray, y: np.ndarray) -> float:
return self.impl.score(x, y)
@classmethod
def load(cls, model_desc: dict):
obj_layout = super().load(model_desc)
......@@ -97,9 +94,6 @@ class LassoRegression(ModelBase):
model_desc['weight'] = self.impl.coef_.tolist()
return model_desc
def score(self, x: np.ndarray, y: np.ndarray) -> float:
return self.impl.score(x, y)
@classmethod
def load(cls, model_desc: dict):
obj_layout = super().load(model_desc)
......
......@@ -22,12 +22,15 @@ class ModelBase(metaclass=abc.ABCMeta):
self.trained_time = None
def fit(self, x, y):
self.impl.fit(x, y)
self.impl.fit(x, x.flatten())
self.trained_time = arrow.now().format("YYYY-MM-DD HH:mm:ss")
def predict(self, x: np.ndarray) -> np.ndarray:
return self.impl.predict(x)
def score(self, x: np.ndarray, y: np.ndarray) -> float:
return self.impl.score(x, y)
@abc.abstractmethod
def save(self) -> dict:
......
......@@ -6,7 +6,6 @@ Created on 2017-12-4
"""
from typing import List
import numpy as np
from distutils.version import LooseVersion
from sklearn import __version__ as sklearn_version
from sklearn.ensemble import RandomForestRegressor as RandomForestRegressorImpl
......@@ -23,9 +22,6 @@ class RandomForestRegressor(ModelBase):
self.impl = RandomForestRegressorImpl(n_estimators, **kwargs)
self.trained_time = None
def score(self, x: np.ndarray, y: np.ndarray) -> float:
return self.impl.score(x, y)
def save(self) -> dict:
model_desc = super().save()
model_desc['sklearn_version'] = sklearn_version
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment