Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
5df30c1b
Commit
5df30c1b
authored
May 01, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update neutralize
parent
31569ef4
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
36 additions
and
24 deletions
+36
-24
neutralize.py
alphamind/data/neutralize.py
+27
-15
test_neutralize.py
alphamind/tests/data/test_neutralize.py
+9
-9
No files found.
alphamind/data/neutralize.py
View file @
5df30c1b
...
@@ -10,21 +10,25 @@ from numpy import zeros
...
@@ -10,21 +10,25 @@ from numpy import zeros
from
numpy.linalg
import
solve
from
numpy.linalg
import
solve
from
typing
import
Tuple
from
typing
import
Tuple
from
typing
import
Union
from
typing
import
Union
from
typing
import
Dict
from
alphamind.aggregate
import
groupby
from
alphamind.aggregate
import
groupby
def
neutralize
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
,
output_explained
=
False
)
\
def
neutralize
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
,
output_explained
=
False
,
output_exposure
=
False
)
\
->
Tuple
[
np
.
ndarray
,
Tuple
[
Union
[
np
.
ndarray
,
np
.
ndarray
]
]]:
->
Union
[
np
.
ndarray
,
Tuple
[
np
.
ndarray
,
Dict
]]:
if
groups
is
not
None
:
if
groups
is
not
None
:
res
=
zeros
(
y
.
shape
)
res
=
zeros
(
y
.
shape
)
if
y
.
ndim
==
2
:
if
y
.
ndim
==
2
:
if
output_explained
:
if
output_explained
:
explained
=
zeros
(
x
.
shape
+
(
y
.
shape
[
1
],))
explained
=
zeros
(
x
.
shape
+
(
y
.
shape
[
1
],))
exposure
=
zeros
(
x
.
shape
+
(
y
.
shape
[
1
],))
if
output_exposure
:
exposure
=
zeros
(
x
.
shape
+
(
y
.
shape
[
1
],))
else
:
else
:
explained
=
zeros
(
x
.
shape
)
if
output_explained
:
exposure
=
zeros
(
x
.
shape
)
explained
=
zeros
(
x
.
shape
)
if
output_exposure
:
exposure
=
zeros
(
x
.
shape
)
groups_ids
=
groupby
(
groups
)
groups_ids
=
groupby
(
groups
)
...
@@ -33,24 +37,32 @@ def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None, output_exp
...
@@ -33,24 +37,32 @@ def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None, output_exp
curr_y
=
y
[
curr_idx
]
curr_y
=
y
[
curr_idx
]
b
=
ls_fit
(
x
[
curr_idx
],
y
[
curr_idx
])
b
=
ls_fit
(
x
[
curr_idx
],
y
[
curr_idx
])
res
[
curr_idx
]
=
ls_res
(
curr_x
,
curr_y
,
b
)
res
[
curr_idx
]
=
ls_res
(
curr_x
,
curr_y
,
b
)
if
exposure
.
ndim
==
3
:
if
output_exposure
and
exposure
.
ndim
==
3
:
for
i
in
range
(
exposure
.
shape
[
2
]):
for
i
in
range
(
exposure
.
shape
[
2
]):
exposure
[
curr_idx
,
:,
i
]
=
b
[:,
i
]
exposure
[
curr_idx
,
:,
i
]
=
b
[:,
i
]
el
s
e
:
el
if
output_exposur
e
:
exposure
[
curr_idx
]
=
b
exposure
[
curr_idx
]
=
b
if
output_explained
:
if
output_explained
:
explained
[
curr_idx
]
=
ls_explain
(
curr_x
,
b
)
explained
[
curr_idx
]
=
ls_explain
(
curr_x
,
b
)
if
output_explained
:
return
res
,
(
exposure
,
explained
)
else
:
return
res
,
(
exposure
,)
else
:
else
:
b
=
ls_fit
(
x
,
y
)
b
=
ls_fit
(
x
,
y
)
res
=
ls_res
(
x
,
y
,
b
)
if
output_explained
:
if
output_explained
:
return
ls_res
(
x
,
y
,
b
),
(
b
,
ls_explain
(
x
,
b
))
explained
=
ls_explain
(
x
,
b
)
else
:
elif
output_exposure
:
return
ls_res
(
x
,
y
,
b
),
(
b
,)
exposure
=
b
output_dict
=
{}
if
output_explained
:
output_dict
[
'explained'
]
=
explained
elif
output_exposure
:
output_dict
[
'exposure'
]
=
exposure
if
output_dict
:
return
res
,
output_dict
else
:
return
res
def
ls_fit
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
)
->
np
.
ndarray
:
def
ls_fit
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
)
->
np
.
ndarray
:
...
...
alphamind/tests/data/test_neutralize.py
View file @
5df30c1b
...
@@ -18,7 +18,7 @@ class TestNeutralize(unittest.TestCase):
...
@@ -18,7 +18,7 @@ class TestNeutralize(unittest.TestCase):
y
=
np
.
random
.
randn
(
3000
,
4
)
y
=
np
.
random
.
randn
(
3000
,
4
)
x
=
np
.
random
.
randn
(
3000
,
10
)
x
=
np
.
random
.
randn
(
3000
,
10
)
calc_res
,
_
=
neutralize
(
x
,
y
)
calc_res
=
neutralize
(
x
,
y
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
.
fit
(
x
,
y
)
model
.
fit
(
x
,
y
)
...
@@ -46,7 +46,7 @@ class TestNeutralize(unittest.TestCase):
...
@@ -46,7 +46,7 @@ class TestNeutralize(unittest.TestCase):
y
=
np
.
random
.
randn
(
3000
)
y
=
np
.
random
.
randn
(
3000
)
x
=
np
.
random
.
randn
(
3000
,
10
)
x
=
np
.
random
.
randn
(
3000
,
10
)
calc_res
,
(
b
,
calc_explained
)
=
neutralize
(
x
,
y
,
output_explained
=
True
)
calc_res
,
other_stats
=
neutralize
(
x
,
y
,
output_explained
=
True
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
.
fit
(
x
,
y
)
model
.
fit
(
x
,
y
)
...
@@ -55,12 +55,12 @@ class TestNeutralize(unittest.TestCase):
...
@@ -55,12 +55,12 @@ class TestNeutralize(unittest.TestCase):
exp_explained
=
x
*
model
.
coef_
.
T
exp_explained
=
x
*
model
.
coef_
.
T
np
.
testing
.
assert_array_almost_equal
(
calc_res
,
exp_res
)
np
.
testing
.
assert_array_almost_equal
(
calc_res
,
exp_res
)
np
.
testing
.
assert_array_almost_equal
(
calc_explained
,
exp_explained
)
np
.
testing
.
assert_array_almost_equal
(
other_stats
[
'explained'
]
,
exp_explained
)
y
=
np
.
random
.
randn
(
3000
,
4
)
y
=
np
.
random
.
randn
(
3000
,
4
)
x
=
np
.
random
.
randn
(
3000
,
10
)
x
=
np
.
random
.
randn
(
3000
,
10
)
calc_res
,
(
b
,
calc_explained
)
=
neutralize
(
x
,
y
,
output_explained
=
True
)
calc_res
,
other_stats
=
neutralize
(
x
,
y
,
output_explained
=
True
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
.
fit
(
x
,
y
)
model
.
fit
(
x
,
y
)
...
@@ -70,14 +70,14 @@ class TestNeutralize(unittest.TestCase):
...
@@ -70,14 +70,14 @@ class TestNeutralize(unittest.TestCase):
for
i
in
range
(
y
.
shape
[
1
]):
for
i
in
range
(
y
.
shape
[
1
]):
exp_explained
=
x
*
model
.
coef_
.
T
[:,
i
]
exp_explained
=
x
*
model
.
coef_
.
T
[:,
i
]
np
.
testing
.
assert_array_almost_equal
(
calc_explained
[:,
:,
i
],
exp_explained
)
np
.
testing
.
assert_array_almost_equal
(
other_stats
[
'explained'
]
[:,
:,
i
],
exp_explained
)
def
test_neutralize_explain_output_with_group
(
self
):
def
test_neutralize_explain_output_with_group
(
self
):
y
=
np
.
random
.
randn
(
3000
)
y
=
np
.
random
.
randn
(
3000
)
x
=
np
.
random
.
randn
(
3000
,
10
)
x
=
np
.
random
.
randn
(
3000
,
10
)
groups
=
np
.
random
.
randint
(
30
,
size
=
3000
)
groups
=
np
.
random
.
randint
(
30
,
size
=
3000
)
calc_res
,
(
b
,
calc_explained
)
=
neutralize
(
x
,
y
,
groups
,
output_explained
=
True
)
calc_res
,
other_stats
=
neutralize
(
x
,
y
,
groups
,
output_explained
=
True
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
=
LinearRegression
(
fit_intercept
=
False
)
for
i
in
range
(
30
):
for
i
in
range
(
30
):
...
@@ -87,12 +87,12 @@ class TestNeutralize(unittest.TestCase):
...
@@ -87,12 +87,12 @@ class TestNeutralize(unittest.TestCase):
exp_res
=
curr_y
-
curr_x
@
model
.
coef_
.
T
exp_res
=
curr_y
-
curr_x
@
model
.
coef_
.
T
exp_explained
=
curr_x
*
model
.
coef_
.
T
exp_explained
=
curr_x
*
model
.
coef_
.
T
np
.
testing
.
assert_array_almost_equal
(
calc_res
[
groups
==
i
],
exp_res
)
np
.
testing
.
assert_array_almost_equal
(
calc_res
[
groups
==
i
],
exp_res
)
np
.
testing
.
assert_array_almost_equal
(
calc_explained
[
groups
==
i
],
exp_explained
)
np
.
testing
.
assert_array_almost_equal
(
other_stats
[
'explained'
]
[
groups
==
i
],
exp_explained
)
y
=
np
.
random
.
randn
(
3000
,
4
)
y
=
np
.
random
.
randn
(
3000
,
4
)
x
=
np
.
random
.
randn
(
3000
,
10
)
x
=
np
.
random
.
randn
(
3000
,
10
)
calc_res
,
(
b
,
calc_explained
)
=
neutralize
(
x
,
y
,
groups
,
output_explained
=
True
)
calc_res
,
other_stats
=
neutralize
(
x
,
y
,
groups
,
output_explained
=
True
)
model
=
LinearRegression
(
fit_intercept
=
False
)
model
=
LinearRegression
(
fit_intercept
=
False
)
for
i
in
range
(
30
):
for
i
in
range
(
30
):
...
@@ -104,7 +104,7 @@ class TestNeutralize(unittest.TestCase):
...
@@ -104,7 +104,7 @@ class TestNeutralize(unittest.TestCase):
for
j
in
range
(
y
.
shape
[
1
]):
for
j
in
range
(
y
.
shape
[
1
]):
exp_explained
=
curr_x
*
model
.
coef_
.
T
[:,
j
]
exp_explained
=
curr_x
*
model
.
coef_
.
T
[:,
j
]
np
.
testing
.
assert_array_almost_equal
(
calc_explained
[
groups
==
i
,
:,
j
],
exp_explained
)
np
.
testing
.
assert_array_almost_equal
(
other_stats
[
'explained'
]
[
groups
==
i
,
:,
j
],
exp_explained
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment