Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
6f5c1d00
Commit
6f5c1d00
authored
Jan 05, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
comment out XGBRegressor
parent
a89b73c3
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
13 deletions
+13
-13
treemodel.py
alphamind/model/treemodel.py
+13
-13
No files found.
alphamind/model/treemodel.py
View file @
6f5c1d00
...
@@ -10,7 +10,7 @@ import numpy as np
...
@@ -10,7 +10,7 @@ import numpy as np
from
distutils.version
import
LooseVersion
from
distutils.version
import
LooseVersion
from
sklearn
import
__version__
as
sklearn_version
from
sklearn
import
__version__
as
sklearn_version
from
sklearn.ensemble
import
RandomForestRegressor
as
RandomForestRegressorImpl
from
sklearn.ensemble
import
RandomForestRegressor
as
RandomForestRegressorImpl
from
xgboost
import
XGBRegressor
as
XGBRegressorImpl
#
from xgboost import XGBRegressor as XGBRegressorImpl
from
alphamind.model.modelbase
import
ModelBase
from
alphamind.model.modelbase
import
ModelBase
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
alpha_logger
...
@@ -40,17 +40,17 @@ class RandomForestRegressor(ModelBase):
...
@@ -40,17 +40,17 @@ class RandomForestRegressor(ModelBase):
return
obj_layout
return
obj_layout
class
XGBRegressor
(
ModelBase
):
#
class XGBRegressor(ModelBase):
#
def
__init__
(
self
,
#
def __init__(self,
n_estimators
:
int
=
100
,
#
n_estimators: int=100,
learning_rate
:
float
=
0.1
,
#
learning_rate: float=0.1,
max_depth
:
int
=
3
,
#
max_depth: int=3,
features
:
List
=
None
,
**
kwargs
):
#
features: List=None, **kwargs):
super
()
.
__init__
(
features
)
#
super().__init__(features)
self
.
impl
=
XGBRegressorImpl
(
n_estimators
=
n_estimators
,
#
self.impl = XGBRegressorImpl(n_estimators=n_estimators,
learning_rate
=
learning_rate
,
#
learning_rate=learning_rate,
max_depth
=
max_depth
,
#
max_depth=max_depth,
**
kwargs
)
#
**kwargs)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment