Commit 6f5c1d00 authored by Dr.李's avatar Dr.李

comment out XGBRegressor

parent a89b73c3
...@@ -10,7 +10,7 @@ import numpy as np ...@@ -10,7 +10,7 @@ import numpy as np
from distutils.version import LooseVersion from distutils.version import LooseVersion
from sklearn import __version__ as sklearn_version from sklearn import __version__ as sklearn_version
from sklearn.ensemble import RandomForestRegressor as RandomForestRegressorImpl from sklearn.ensemble import RandomForestRegressor as RandomForestRegressorImpl
from xgboost import XGBRegressor as XGBRegressorImpl # from xgboost import XGBRegressor as XGBRegressorImpl
from alphamind.model.modelbase import ModelBase from alphamind.model.modelbase import ModelBase
from alphamind.utilities import alpha_logger from alphamind.utilities import alpha_logger
...@@ -40,17 +40,17 @@ class RandomForestRegressor(ModelBase): ...@@ -40,17 +40,17 @@ class RandomForestRegressor(ModelBase):
return obj_layout return obj_layout
class XGBRegressor(ModelBase): # class XGBRegressor(ModelBase):
#
def __init__(self, # def __init__(self,
n_estimators: int=100, # n_estimators: int=100,
learning_rate: float=0.1, # learning_rate: float=0.1,
max_depth: int=3, # max_depth: int=3,
features: List=None, **kwargs): # features: List=None, **kwargs):
super().__init__(features) # super().__init__(features)
self.impl = XGBRegressorImpl(n_estimators=n_estimators, # self.impl = XGBRegressorImpl(n_estimators=n_estimators,
learning_rate=learning_rate, # learning_rate=learning_rate,
max_depth=max_depth, # max_depth=max_depth,
**kwargs) # **kwargs)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment