Commit 7b72cb5a authored by Dr.李's avatar Dr.李

added more

parent b9d2a972
*.pyc
.idea/*
\ No newline at end of file
*.pyc
.idea/*
build/*
dist/*
Alpha_Mind.egg-info/*
*.pyd
*.c
*.cpp
*.html
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
# -*- coding: utf-8 -*-
# distutils: language = c++
"""
Created on 2017-4-26
@author: cheng.li
"""
import numpy as np
cimport numpy as np
cimport cython
from libc.math cimport sqrt
from libc.math cimport fabs
from libc.stdlib cimport calloc
from libc.stdlib cimport free
from numpy import array
from libcpp.vector cimport vector as cpp_vector
from libcpp.unordered_map cimport unordered_map as cpp_map
from cython.operator cimport dereference as deref
np.import_array()
cdef extern from "numpy/arrayobject.h":
void PyArray_ENABLEFLAGS(np.ndarray arr, int flags)
ctypedef long long int64_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef list groupby(long[:] groups):
cdef long long length = groups.shape[0]
cdef cpp_map[long, cpp_vector[int64_t]] group_ids
cdef long long i
cdef long curr_tag
cdef cpp_map[long, cpp_vector[int64_t]].iterator it
cdef list res = []
cdef np.ndarray[long long, ndim=1] npy_array
cdef cpp_vector[int64_t] v
cdef long long* arr_ptr
for i in range(length):
curr_tag = groups[i]
it = group_ids.find(curr_tag)
if it == group_ids.end():
group_ids[curr_tag] = [i]
else:
deref(it).second.push_back(i)
for v in group_ids.values():
res.append(array(v, dtype=np.int64))
return res
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cdef long* group_mapping(long* groups, size_t length, size_t* max_g):
cdef long *res_ptr = <long*>calloc(length, sizeof(int))
cdef cpp_map[long, long] current_hold
cdef long curr_tag
cdef long running_tag = -1
cdef size_t i = 0
cdef cpp_map[long, long].iterator it
for i in range(length):
curr_tag = groups[i]
it = current_hold.find(curr_tag)
if it == current_hold.end():
running_tag += 1
res_ptr[i] = running_tag
current_hold[curr_tag] = running_tag
else:
res_ptr[i] = deref(it).second
max_g[0] = running_tag
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_sum(long* groups, size_t max_g, double* x, size_t length, size_t width) nogil:
cdef double* res_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
for i in range(length):
loop_idx1 = i*width
loop_idx2 = groups[i]*width
for j in range(width):
res_ptr[loop_idx2 + j] += x[loop_idx1 + j]
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_abssum(long* groups, size_t max_g, double* x, size_t length, size_t width) nogil:
cdef double* res_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
for i in range(length):
loop_idx1 = i*width
loop_idx2 = groups[i]*width
for j in range(width):
res_ptr[loop_idx2 + j] += fabs(x[loop_idx1 + j])
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_mean(long* groups, size_t max_g, double* x, size_t length, size_t width) nogil:
cdef double* res_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef long* bin_count_ptr = <long*>calloc(max_g+1, sizeof(int))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
for i in range(length):
loop_idx1 = i*width
loop_idx2 = groups[i]*width
for j in range(width):
res_ptr[loop_idx2 + j] += x[loop_idx1 + j]
bin_count_ptr[groups[i]] += 1
for i in range(max_g+1):
curr = bin_count_ptr[i]
if curr != 0:
loop_idx1 = i*width
for j in range(width):
res_ptr[loop_idx1 + j] /= curr
free(bin_count_ptr)
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_std(long* groups, size_t max_g, double* x, size_t length, size_t width, long ddof=1) nogil:
cdef double* running_sum_square_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef double* running_sum_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef long* bin_count_ptr = <long*>calloc(max_g+1, sizeof(int))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
cdef double raw_value
for i in range(length):
loop_idx1 = i * width
loop_idx2 = groups[i] * width
for j in range(width):
raw_value = x[loop_idx1 + j]
running_sum_ptr[loop_idx2 + j] += raw_value
running_sum_square_ptr[loop_idx2 + j] += raw_value * raw_value
bin_count_ptr[groups[i]] += 1
for i in range(max_g+1):
curr = bin_count_ptr[i]
loop_idx1 = i * width
if curr != 0:
for j in range(width):
loop_idx2 = loop_idx1 + j
running_sum_square_ptr[loop_idx2] = sqrt((running_sum_square_ptr[loop_idx2] - running_sum_ptr[loop_idx2] * running_sum_ptr[loop_idx2] / curr) / (curr - ddof))
free(running_sum_ptr)
free(bin_count_ptr)
return running_sum_square_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef np.ndarray[double, ndim=2] transform(long[:] groups, double[:, :] x, str func):
cdef size_t length = x.shape[0]
cdef size_t width = x.shape[1]
cdef size_t* max_g = <size_t*>calloc(1, sizeof(size_t))
cdef long* mapped_groups = group_mapping(&groups[0], length, max_g)
cdef double* res_data_ptr = <double*>calloc(length*width, sizeof(double))
cdef double* value_data_ptr
cdef np.ndarray[double, ndim=2] res
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
if func == 'mean':
value_data_ptr = agg_mean(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func == 'std':
value_data_ptr = agg_std(mapped_groups, max_g[0], &x[0, 0], length, width, ddof=1)
elif func == 'sum':
value_data_ptr = agg_sum(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func =='abssum':
value_data_ptr = agg_abssum(mapped_groups, max_g[0], &x[0, 0], length, width)
with nogil:
for i in range(length):
loop_idx1 = i*width
loop_idx2 = mapped_groups[i] * width
for j in range(width):
res_data_ptr[loop_idx1 + j] = value_data_ptr[loop_idx2 + j]
free(value_data_ptr)
free(mapped_groups)
free(max_g)
res = np.PyArray_SimpleNewFromData(2, [length, width], np.NPY_FLOAT64, res_data_ptr)
PyArray_ENABLEFLAGS(res, np.NPY_OWNDATA)
return res
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef np.ndarray[double, ndim=2] aggregate(long[:] groups, double[:, :] x, str func):
cdef size_t length = x.shape[0]
cdef size_t width = x.shape[1]
cdef size_t* max_g = <size_t*>calloc(1, sizeof(size_t))
cdef long* mapped_groups = group_mapping(&groups[0], length, max_g)
cdef np.ndarray[double, ndim=2] res
cdef double* value_data_ptr
if func == 'mean':
value_data_ptr = agg_mean(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func == 'std':
value_data_ptr = agg_std(mapped_groups, max_g[0], &x[0, 0], length, width, ddof=1)
elif func == 'sum':
value_data_ptr = agg_sum(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func =='abssum':
value_data_ptr = agg_abssum(mapped_groups, max_g[0], &x[0, 0], length, width)
res = np.PyArray_SimpleNewFromData(2, [max_g[0]+1, width], np.NPY_FLOAT64, value_data_ptr)
PyArray_ENABLEFLAGS(res, np.NPY_OWNDATA)
free(mapped_groups)
free(max_g)
# -*- coding: utf-8 -*-
# distutils: language = c++
"""
Created on 2017-4-26
@author: cheng.li
"""
import numpy as np
cimport numpy as np
cimport cython
from libc.math cimport sqrt
from libc.math cimport fabs
from libc.stdlib cimport calloc
from libc.stdlib cimport free
from numpy import array
from libcpp.vector cimport vector as cpp_vector
from libcpp.unordered_map cimport unordered_map as cpp_map
from cython.operator cimport dereference as deref
np.import_array()
cdef extern from "numpy/arrayobject.h":
void PyArray_ENABLEFLAGS(np.ndarray arr, int flags)
ctypedef long long int64_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef list groupby(long[:] groups):
cdef long long length = groups.shape[0]
cdef cpp_map[long, cpp_vector[int64_t]] group_ids
cdef long long i
cdef long curr_tag
cdef cpp_map[long, cpp_vector[int64_t]].iterator it
cdef list res = []
cdef np.ndarray[long long, ndim=1] npy_array
cdef cpp_vector[int64_t] v
cdef long long* arr_ptr
for i in range(length):
curr_tag = groups[i]
it = group_ids.find(curr_tag)
if it == group_ids.end():
group_ids[curr_tag] = [i]
else:
deref(it).second.push_back(i)
for v in group_ids.values():
res.append(array(v, dtype=np.int64))
return res
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cdef long* group_mapping(long* groups, size_t length, size_t* max_g):
cdef long *res_ptr = <long*>calloc(length, sizeof(int))
cdef cpp_map[long, long] current_hold
cdef long curr_tag
cdef long running_tag = -1
cdef size_t i = 0
cdef cpp_map[long, long].iterator it
for i in range(length):
curr_tag = groups[i]
it = current_hold.find(curr_tag)
if it == current_hold.end():
running_tag += 1
res_ptr[i] = running_tag
current_hold[curr_tag] = running_tag
else:
res_ptr[i] = deref(it).second
max_g[0] = running_tag
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_sum(long* groups, size_t max_g, double* x, size_t length, size_t width) nogil:
cdef double* res_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
for i in range(length):
loop_idx1 = i*width
loop_idx2 = groups[i]*width
for j in range(width):
res_ptr[loop_idx2 + j] += x[loop_idx1 + j]
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_abssum(long* groups, size_t max_g, double* x, size_t length, size_t width) nogil:
cdef double* res_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
for i in range(length):
loop_idx1 = i*width
loop_idx2 = groups[i]*width
for j in range(width):
res_ptr[loop_idx2 + j] += fabs(x[loop_idx1 + j])
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_mean(long* groups, size_t max_g, double* x, size_t length, size_t width) nogil:
cdef double* res_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef long* bin_count_ptr = <long*>calloc(max_g+1, sizeof(int))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
for i in range(length):
loop_idx1 = i*width
loop_idx2 = groups[i]*width
for j in range(width):
res_ptr[loop_idx2 + j] += x[loop_idx1 + j]
bin_count_ptr[groups[i]] += 1
for i in range(max_g+1):
curr = bin_count_ptr[i]
if curr != 0:
loop_idx1 = i*width
for j in range(width):
res_ptr[loop_idx1 + j] /= curr
free(bin_count_ptr)
return res_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.initializedcheck(False)
cdef double* agg_std(long* groups, size_t max_g, double* x, size_t length, size_t width, long ddof=1) nogil:
cdef double* running_sum_square_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef double* running_sum_ptr = <double*>calloc((max_g+1)*width, sizeof(double))
cdef long* bin_count_ptr = <long*>calloc(max_g+1, sizeof(int))
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
cdef long curr
cdef double raw_value
for i in range(length):
loop_idx1 = i * width
loop_idx2 = groups[i] * width
for j in range(width):
raw_value = x[loop_idx1 + j]
running_sum_ptr[loop_idx2 + j] += raw_value
running_sum_square_ptr[loop_idx2 + j] += raw_value * raw_value
bin_count_ptr[groups[i]] += 1
for i in range(max_g+1):
curr = bin_count_ptr[i]
loop_idx1 = i * width
if curr != 0:
for j in range(width):
loop_idx2 = loop_idx1 + j
running_sum_square_ptr[loop_idx2] = sqrt((running_sum_square_ptr[loop_idx2] - running_sum_ptr[loop_idx2] * running_sum_ptr[loop_idx2] / curr) / (curr - ddof))
free(running_sum_ptr)
free(bin_count_ptr)
return running_sum_square_ptr
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef np.ndarray[double, ndim=2] transform(long[:] groups, double[:, :] x, str func):
cdef size_t length = x.shape[0]
cdef size_t width = x.shape[1]
cdef size_t* max_g = <size_t*>calloc(1, sizeof(size_t))
cdef long* mapped_groups = group_mapping(&groups[0], length, max_g)
cdef double* res_data_ptr = <double*>calloc(length*width, sizeof(double))
cdef double* value_data_ptr
cdef np.ndarray[double, ndim=2] res
cdef size_t i
cdef size_t j
cdef size_t loop_idx1
cdef size_t loop_idx2
if func == 'mean':
value_data_ptr = agg_mean(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func == 'std':
value_data_ptr = agg_std(mapped_groups, max_g[0], &x[0, 0], length, width, ddof=1)
elif func == 'sum':
value_data_ptr = agg_sum(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func =='abssum':
value_data_ptr = agg_abssum(mapped_groups, max_g[0], &x[0, 0], length, width)
with nogil:
for i in range(length):
loop_idx1 = i*width
loop_idx2 = mapped_groups[i] * width
for j in range(width):
res_data_ptr[loop_idx1 + j] = value_data_ptr[loop_idx2 + j]
free(value_data_ptr)
free(mapped_groups)
free(max_g)
res = np.PyArray_SimpleNewFromData(2, [length, width], np.NPY_FLOAT64, res_data_ptr)
PyArray_ENABLEFLAGS(res, np.NPY_OWNDATA)
return res
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef np.ndarray[double, ndim=2] aggregate(long[:] groups, double[:, :] x, str func):
cdef size_t length = x.shape[0]
cdef size_t width = x.shape[1]
cdef size_t* max_g = <size_t*>calloc(1, sizeof(size_t))
cdef long* mapped_groups = group_mapping(&groups[0], length, max_g)
cdef np.ndarray[double, ndim=2] res
cdef double* value_data_ptr
if func == 'mean':
value_data_ptr = agg_mean(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func == 'std':
value_data_ptr = agg_std(mapped_groups, max_g[0], &x[0, 0], length, width, ddof=1)
elif func == 'sum':
value_data_ptr = agg_sum(mapped_groups, max_g[0], &x[0, 0], length, width)
elif func =='abssum':
value_data_ptr = agg_abssum(mapped_groups, max_g[0], &x[0, 0], length, width)
res = np.PyArray_SimpleNewFromData(2, [max_g[0]+1, width], np.NPY_FLOAT64, value_data_ptr)
PyArray_ENABLEFLAGS(res, np.NPY_OWNDATA)
free(mapped_groups)
free(max_g)
return res
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
from alphamind.benchmarks.data.neutralize import benchmark_neutralize
from alphamind.benchmarks.data.standardize import benchmark_standardize
from alphamind.benchmarks.data.standardize import benchmark_standardize_with_group
from alphamind.benchmarks.data.winsorize import benchmark_winsorize_normal
from alphamind.benchmarks.data.winsorize import benchmark_winsorize_normal_with_group
from alphamind.benchmarks.portfolio.rankbuild import benchmark_build_rank
from alphamind.benchmarks.portfolio.rankbuild import benchmark_build_rank_with_group
from alphamind.benchmarks.settlement.simplesettle import benchmark_simple_settle
from alphamind.benchmarks.settlement.simplesettle import benchmark_simple_settle_with_group
if __name__ == '__main__':
benchmark_neutralize(3000, 10, 1000)
benchmark_neutralize(30, 10, 50000)
benchmark_neutralize(50000, 50, 20)
benchmark_standardize(3000, 10, 1000)
benchmark_standardize_with_group(3000, 10, 1000, 30)
benchmark_standardize(30, 10, 50000)
benchmark_standardize_with_group(30, 10, 5000, 5)
benchmark_standardize(50000, 50, 20)
benchmark_standardize_with_group(50000, 50, 20, 50)
benchmark_winsorize_normal(3000, 10, 1000)
benchmark_winsorize_normal_with_group(3000, 10, 1000, 30)
benchmark_winsorize_normal(30, 10, 50000)
benchmark_winsorize_normal_with_group(30, 10, 5000, 5)
benchmark_winsorize_normal(50000, 50, 20)
benchmark_winsorize_normal_with_group(50000, 50, 20, 50)
benchmark_build_rank(3000, 1000, 300)
benchmark_build_rank_with_group(3000, 1000, 10, 30)
benchmark_build_rank(30, 50000, 3)
benchmark_build_rank_with_group(30, 50000, 1, 3)
benchmark_build_rank(50000, 20, 3000)
benchmark_build_rank_with_group(50000, 20, 10, 300)
benchmark_simple_settle(3000, 10, 1000)
benchmark_simple_settle_with_group(3000, 10, 1000, 30)
benchmark_simple_settle(30, 10, 50000)
benchmark_simple_settle_with_group(30, 10, 5000, 5)
benchmark_simple_settle(50000, 50, 20)
benchmark_simple_settle_with_group(50000, 50, 20, 50)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
from alphamind.benchmarks.data.neutralize import benchmark_neutralize
from alphamind.benchmarks.data.standardize import benchmark_standardize
from alphamind.benchmarks.data.standardize import benchmark_standardize_with_group
from alphamind.benchmarks.data.winsorize import benchmark_winsorize_normal
from alphamind.benchmarks.data.winsorize import benchmark_winsorize_normal_with_group
from alphamind.benchmarks.portfolio.rankbuild import benchmark_build_rank
from alphamind.benchmarks.portfolio.rankbuild import benchmark_build_rank_with_group
from alphamind.benchmarks.settlement.simplesettle import benchmark_simple_settle
from alphamind.benchmarks.settlement.simplesettle import benchmark_simple_settle_with_group
if __name__ == '__main__':
benchmark_neutralize(3000, 10, 1000)
benchmark_neutralize(30, 10, 50000)
benchmark_neutralize(50000, 50, 20)
benchmark_standardize(3000, 10, 1000)
benchmark_standardize_with_group(3000, 10, 1000, 30)
benchmark_standardize(30, 10, 50000)
benchmark_standardize_with_group(30, 10, 5000, 5)
benchmark_standardize(50000, 50, 20)
benchmark_standardize_with_group(50000, 50, 20, 50)
benchmark_winsorize_normal(3000, 10, 1000)
benchmark_winsorize_normal_with_group(3000, 10, 1000, 30)
benchmark_winsorize_normal(30, 10, 50000)
benchmark_winsorize_normal_with_group(30, 10, 5000, 5)
benchmark_winsorize_normal(50000, 50, 20)
benchmark_winsorize_normal_with_group(50000, 50, 20, 50)
benchmark_build_rank(3000, 1000, 300)
benchmark_build_rank_with_group(3000, 1000, 10, 30)
benchmark_build_rank(30, 50000, 3)
benchmark_build_rank_with_group(30, 50000, 1, 3)
benchmark_build_rank(50000, 20, 3000)
benchmark_build_rank_with_group(50000, 20, 10, 300)
benchmark_simple_settle(3000, 10, 1000)
benchmark_simple_settle_with_group(3000, 10, 1000, 30)
benchmark_simple_settle(30, 10, 50000)
benchmark_simple_settle_with_group(30, 10, 5000, 5)
benchmark_simple_settle(50000, 50, 20)
benchmark_simple_settle_with_group(50000, 50, 20, 50)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import datetime as dt
import numpy as np
from sklearn.linear_model import LinearRegression
from alphamind.data.neutralize import neutralize
def benchmark_neutralize(n_samples: int, n_features: int, n_loops: int) -> None:
print("-" * 60)
print("Starting least square fitting benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops))
y = np.random.randn(n_samples, 5)
x = np.random.randn(n_samples, n_features)
start = dt.datetime.now()
for _ in range(n_loops):
_ = neutralize(x, y)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
benchmark_model = LinearRegression(fit_intercept=False)
benchmark_model.fit(x, y)
_ = y - x @ benchmark_model.coef_.T
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_neutralize(3000, 10, 1000)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import datetime as dt
import numpy as np
from sklearn.linear_model import LinearRegression
from alphamind.data.neutralize import neutralize
def benchmark_neutralize(n_samples: int, n_features: int, n_loops: int) -> None:
print("-" * 60)
print("Starting least square fitting benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops))
y = np.random.randn(n_samples, 5)
x = np.random.randn(n_samples, n_features)
start = dt.datetime.now()
for _ in range(n_loops):
_ = neutralize(x, y)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
benchmark_model = LinearRegression(fit_intercept=False)
benchmark_model.fit(x, y)
_ = y - x @ benchmark_model.coef_.T
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_neutralize(3000, 10, 1000)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from scipy.stats import zscore
from alphamind.data.standardize import standardize
def benchmark_standardize(n_samples: int, n_features: int, n_loops: int) -> None:
print("-" * 60)
print("Starting standardizing benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops))
x = np.random.randn(n_samples, n_features)
start = dt.datetime.now()
for _ in range(n_loops):
_ = standardize(x)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
_ = zscore(x)
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_standardize_with_group(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None:
print("-" * 60)
print("Starting standardizing with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups))
x = np.random.randn(n_samples, n_features)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
_ = standardize(x, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
_ = pd.DataFrame(x).groupby(groups).transform(lambda s: (s - s.mean(axis=0)) / s.std(axis=0))
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_standardize(3000, 10, 1000)
benchmark_standardize_with_group(3000, 10, 1000, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from scipy.stats import zscore
from alphamind.data.standardize import standardize
def benchmark_standardize(n_samples: int, n_features: int, n_loops: int) -> None:
print("-" * 60)
print("Starting standardizing benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops))
x = np.random.randn(n_samples, n_features)
start = dt.datetime.now()
for _ in range(n_loops):
_ = standardize(x)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
_ = zscore(x)
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_standardize_with_group(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None:
print("-" * 60)
print("Starting standardizing with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups))
x = np.random.randn(n_samples, n_features)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
_ = standardize(x, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
_ = pd.DataFrame(x).groupby(groups).transform(lambda s: (s - s.mean(axis=0)) / s.std(axis=0))
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_standardize(3000, 10, 1000)
benchmark_standardize_with_group(3000, 10, 1000, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from alphamind.data.winsorize import winsorize_normal
def benchmark_winsorize_normal(n_samples: int, n_features: int, n_loops: int) -> None:
print("-" * 60)
print("Starting winsorize normal benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops))
num_stds = 2
x = np.random.randn(n_samples, n_features)
start = dt.datetime.now()
for _ in range(n_loops):
_ = winsorize_normal(x, num_stds)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
def impl(x):
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
res = np.where(x > upper_bound, upper_bound, x)
res = np.where(res < lower_bound, lower_bound, res)
return res
start = dt.datetime.now()
for _ in range(n_loops):
_ = impl(x)
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_winsorize_normal_with_group(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None:
print("-" * 60)
print("Starting winsorize normal with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups))
num_stds = 2
x = np.random.randn(n_samples, n_features)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
_ = winsorize_normal(x, num_stds, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
def impl(x):
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
res = np.where(x > upper_bound, upper_bound, x)
res = np.where(res < lower_bound, lower_bound, res)
return res
start = dt.datetime.now()
for _ in range(n_loops):
_ = pd.DataFrame(x).groupby(groups).transform(impl)
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_winsorize_normal(3000, 10, 1000)
benchmark_winsorize_normal_with_group(3000, 10, 1000, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from alphamind.data.winsorize import winsorize_normal
def benchmark_winsorize_normal(n_samples: int, n_features: int, n_loops: int) -> None:
print("-" * 60)
print("Starting winsorize normal benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops))
num_stds = 2
x = np.random.randn(n_samples, n_features)
start = dt.datetime.now()
for _ in range(n_loops):
_ = winsorize_normal(x, num_stds)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
def impl(x):
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
res = np.where(x > upper_bound, upper_bound, x)
res = np.where(res < lower_bound, lower_bound, res)
return res
start = dt.datetime.now()
for _ in range(n_loops):
_ = impl(x)
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_winsorize_normal_with_group(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None:
print("-" * 60)
print("Starting winsorize normal with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups))
num_stds = 2
x = np.random.randn(n_samples, n_features)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
_ = winsorize_normal(x, num_stds, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
def impl(x):
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
res = np.where(x > upper_bound, upper_bound, x)
res = np.where(res < lower_bound, lower_bound, res)
return res
start = dt.datetime.now()
for _ in range(n_loops):
_ = pd.DataFrame(x).groupby(groups).transform(impl)
benchmark_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_winsorize_normal(3000, 10, 1000)
benchmark_winsorize_normal_with_group(3000, 10, 1000, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
"""
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from alphamind.portfolio.rankbuilder import rank_build
def benchmark_build_rank(n_samples: int, n_loops: int, n_included: int) -> None:
print("-" * 60)
print("Starting portfolio construction by rank benchmarking")
print("Parameters(n_samples: {0}, n_included: {1}, n_loops: {2})".format(n_samples, n_included, n_loops))
n_portfolio = 10
x = np.random.randn(n_samples, n_portfolio)
start = dt.datetime.now()
for _ in range(n_loops):
calc_weights = rank_build(x, n_included)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
exp_weights = np.zeros((len(x), n_portfolio))
choosed_index = (-x).argsort(axis=0).argsort(axis=0) < n_included
for j in range(n_portfolio):
exp_weights[choosed_index[:, j], j] = 1.
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_weights, exp_weights)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_build_rank_with_group(n_samples: int, n_loops: int, n_included: int, n_groups: int) -> None:
print("-" * 60)
print("Starting portfolio construction by rank with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_included: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_included, n_loops, n_groups))
n_portfolio = 10
x = np.random.randn(n_samples, n_portfolio)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
calc_weights = rank_build(x, n_included, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
grouped_ordering = pd.DataFrame(-x).groupby(groups).rank()
exp_weights = np.zeros((len(x), n_portfolio))
masks = (grouped_ordering <= n_included).values
for j in range(n_portfolio):
exp_weights[masks[:, j], j] = 1.
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_weights, exp_weights)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_build_rank(3000, 1000, 300)
benchmark_build_rank_with_group(3000, 1000, 10, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from alphamind.portfolio.rankbuilder import rank_build
def benchmark_build_rank(n_samples: int, n_loops: int, n_included: int) -> None:
print("-" * 60)
print("Starting portfolio construction by rank benchmarking")
print("Parameters(n_samples: {0}, n_included: {1}, n_loops: {2})".format(n_samples, n_included, n_loops))
n_portfolio = 10
x = np.random.randn(n_samples, n_portfolio)
start = dt.datetime.now()
for _ in range(n_loops):
calc_weights = rank_build(x, n_included)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
exp_weights = np.zeros((len(x), n_portfolio))
choosed_index = (-x).argsort(axis=0).argsort(axis=0) < n_included
for j in range(n_portfolio):
exp_weights[choosed_index[:, j], j] = 1.
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_weights, exp_weights)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_build_rank_with_group(n_samples: int, n_loops: int, n_included: int, n_groups: int) -> None:
print("-" * 60)
print("Starting portfolio construction by rank with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_included: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_included, n_loops, n_groups))
n_portfolio = 10
x = np.random.randn(n_samples, n_portfolio)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
calc_weights = rank_build(x, n_included, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
for _ in range(n_loops):
grouped_ordering = pd.DataFrame(-x).groupby(groups).rank()
exp_weights = np.zeros((len(x), n_portfolio))
masks = (grouped_ordering <= n_included).values
for j in range(n_portfolio):
exp_weights[masks[:, j], j] = 1.
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_weights, exp_weights)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_build_rank(3000, 1000, 300)
benchmark_build_rank_with_group(3000, 1000, 10, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from alphamind.settlement.simplesettle import simple_settle
def benchmark_simple_settle(n_samples: int, n_portfolios: int, n_loops: int) -> None:
print("-" * 60)
print("Starting simple settle benchmarking")
print("Parameters(n_samples: {0}, n_portfolios: {1}, n_loops: {2})".format(n_samples, n_portfolios, n_loops))
weights = np.random.randn(n_samples, n_portfolios)
ret_series = np.random.randn(n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
calc_ret = simple_settle(weights, ret_series)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
ret_series.shape = -1, 1
for _ in range(n_loops):
exp_ret = (weights * ret_series).sum(axis=0)
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_ret, exp_ret)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_simple_settle_with_group(n_samples: int, n_portfolios: int, n_loops: int, n_groups: int) -> None:
print("-" * 60)
print("Starting simple settle with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_portfolios: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_portfolios, n_loops, n_groups))
weights = np.random.randn(n_samples, n_portfolios)
ret_series = np.random.randn(n_samples)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
calc_ret = simple_settle(weights, ret_series, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
ret_series.shape = -1, 1
for _ in range(n_loops):
ret_mat = weights * ret_series
exp_ret = pd.DataFrame(ret_mat).groupby(groups, sort=False).sum().values
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_ret, exp_ret)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_simple_settle(3000, 3, 1000)
benchmark_simple_settle_with_group(3000, 3, 1000, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
import datetime as dt
import numpy as np
import pandas as pd
from alphamind.settlement.simplesettle import simple_settle
def benchmark_simple_settle(n_samples: int, n_portfolios: int, n_loops: int) -> None:
print("-" * 60)
print("Starting simple settle benchmarking")
print("Parameters(n_samples: {0}, n_portfolios: {1}, n_loops: {2})".format(n_samples, n_portfolios, n_loops))
weights = np.random.randn(n_samples, n_portfolios)
ret_series = np.random.randn(n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
calc_ret = simple_settle(weights, ret_series)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
ret_series.shape = -1, 1
for _ in range(n_loops):
exp_ret = (weights * ret_series).sum(axis=0)
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_ret, exp_ret)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
def benchmark_simple_settle_with_group(n_samples: int, n_portfolios: int, n_loops: int, n_groups: int) -> None:
print("-" * 60)
print("Starting simple settle with group-by values benchmarking")
print("Parameters(n_samples: {0}, n_portfolios: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_portfolios, n_loops, n_groups))
weights = np.random.randn(n_samples, n_portfolios)
ret_series = np.random.randn(n_samples)
groups = np.random.randint(n_groups, size=n_samples)
start = dt.datetime.now()
for _ in range(n_loops):
calc_ret = simple_settle(weights, ret_series, groups=groups)
impl_model_time = dt.datetime.now() - start
print('{0:20s}: {1}'.format('Implemented model', impl_model_time))
start = dt.datetime.now()
ret_series.shape = -1, 1
for _ in range(n_loops):
ret_mat = weights * ret_series
exp_ret = pd.DataFrame(ret_mat).groupby(groups, sort=False).sum().values
benchmark_model_time = dt.datetime.now() - start
np.testing.assert_array_almost_equal(calc_ret, exp_ret)
print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time))
if __name__ == '__main__':
benchmark_simple_settle(3000, 3, 1000)
benchmark_simple_settle_with_group(3000, 3, 1000, 30)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import numpy as np
from numpy.linalg import solve
from alphamind.aggregate import groupby
def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None) -> np.ndarray:
if groups is not None:
res = np.zeros(y.shape)
groups_ids = groupby(groups)
for curr_idx in groups_ids:
curr_x = x[curr_idx]
curr_y = y[curr_idx]
b = ls_fit(x[curr_idx], y[curr_idx])
res[curr_idx] = ls_res(curr_x, curr_y, b)
return res
else:
b = ls_fit(x, y)
return ls_res(x, y, b)
def ls_fit(x: np.ndarray, y: np.ndarray) -> np.ndarray:
x_bar = x.T
b = solve(x_bar @ x, x_bar @ y)
return b
def ls_res(x: np.ndarray, y: np.ndarray, b: np.ndarray) -> np.ndarray:
return y - x @ b
if __name__ == '__main__':
x = np.random.randn(3000, 3)
y = np.random.randn(3000, 2)
groups = np.random.randint(30, size=3000)
print(neutralize(x, y, groups))
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import numpy as np
from numpy.linalg import solve
from typing import Tuple
from alphamind.aggregate import groupby
def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None) -> Tuple[np.ndarray, np.ndarray]:
if groups is not None:
res = np.zeros(y.shape)
groups_ids = groupby(groups)
for curr_idx in groups_ids:
curr_x = x[curr_idx]
curr_y = y[curr_idx]
b = ls_fit(x[curr_idx], y[curr_idx])
res[curr_idx] = ls_res(curr_x, curr_y, b)
return res
else:
b = ls_fit(x, y)
return ls_res(x, y, b)
def ls_fit(x: np.ndarray, y: np.ndarray) -> np.ndarray:
x_bar = x.T
b = solve(x_bar @ x, x_bar @ y)
return b
def ls_res(x: np.ndarray, y: np.ndarray, b: np.ndarray) -> np.ndarray:
return y - x @ b
def ls_explained(x: np.ndarray, y: np.ndarray, b: np.ndarray) -> np.ndarray:
pass
if __name__ == '__main__':
x = np.random.randn(3000, 3)
y = np.random.randn(3000, 2)
groups = np.random.randint(30, size=3000)
b = ls_fit(x, y)
ls_explained(x, y, b)
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import numpy as np
from alphamind.aggregate import transform
def standardize(x: np.ndarray, groups: np.ndarray=None) -> np.ndarray:
if groups is not None:
mean_values = transform(groups, x, 'mean')
std_values = transform(groups, x, 'std')
return (x - mean_values) / std_values
else:
return (x - x.mean(axis=0)) / x.std(axis=0)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import numpy as np
from alphamind.aggregate import transform
def standardize(x: np.ndarray, groups: np.ndarray=None) -> np.ndarray:
if groups is not None:
mean_values = transform(groups, x, 'mean')
std_values = transform(groups, x, 'std')
return (x - mean_values) / std_values
else:
return (x - x.mean(axis=0)) / x.std(axis=0)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import numpy as np
from alphamind.aggregate import transform
def winsorize_normal(x: np.ndarray, num_stds: int=3, groups: np.ndarray=None) -> np.ndarray:
if groups is not None:
mean_values = transform(groups, x, 'mean')
std_values = transform(groups, x, 'std')
else:
std_values = x.std(axis=0)
mean_values = x.mean(axis=0)
ubound = mean_values + num_stds * std_values
lbound = mean_values - num_stds * std_values
res = np.where(x > ubound, ubound, np.where(x < lbound, lbound, x))
return res
if __name__ == '__main__':
x = np.random.randn(3000, 10)
groups = np.random.randint(0, 20, size=3000)
for _ in range(1000):
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import numpy as np
from alphamind.aggregate import transform
def winsorize_normal(x: np.ndarray, num_stds: int=3, groups: np.ndarray=None) -> np.ndarray:
if groups is not None:
mean_values = transform(groups, x, 'mean')
std_values = transform(groups, x, 'std')
else:
std_values = x.std(axis=0)
mean_values = x.mean(axis=0)
ubound = mean_values + num_stds * std_values
lbound = mean_values - num_stds * std_values
res = np.where(x > ubound, ubound, np.where(x < lbound, lbound, x))
return res
if __name__ == '__main__':
x = np.random.randn(3000, 10)
groups = np.random.randint(0, 20, size=3000)
for _ in range(1000):
winsorize_normal(x, 2, groups)
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-26
@author: cheng.li
# -*- coding: utf-8 -*-
"""
Created on 2017-4-26
@author: cheng.li
"""
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-29
@author: cheng.li
"""
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef void set_value_bool(unsigned char[:, :] mat, long long[:, :] index):
cdef size_t length = index.shape[0]
cdef size_t width = index.shape[1]
cdef size_t i
cdef size_t j
cdef unsigned char* mat_ptr = &mat[0, 0]
cdef long long* index_ptr = &index[0, 0]
cdef size_t k
for i in range(length):
k = i * width
for j in range(width):
mat_ptr[index_ptr[k + j] * width + j] = True
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef void set_value_double(double[:, :] mat, long long[:, :] index, double val):
cdef size_t length = index.shape[0]
cdef size_t width = index.shape[1]
cdef size_t i
cdef size_t j
cdef double* mat_ptr = &mat[0, 0]
cdef long long* index_ptr = &index[0, 0]
cdef size_t k
for i in range(length):
k = i * width
for j in range(width):
mat_ptr[index_ptr[k + j] * width + j] = val
# -*- coding: utf-8 -*-
"""
Created on 2017-4-29
@author: cheng.li
"""
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef void set_value_bool(unsigned char[:, :] mat, long long[:, :] index):
cdef size_t length = index.shape[0]
cdef size_t width = index.shape[1]
cdef size_t i
cdef size_t j
cdef unsigned char* mat_ptr = &mat[0, 0]
cdef long long* index_ptr = &index[0, 0]
cdef size_t k
for i in range(length):
k = i * width
for j in range(width):
mat_ptr[index_ptr[k + j] * width + j] = True
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
cpdef void set_value_double(double[:, :] mat, long long[:, :] index, double val):
cdef size_t length = index.shape[0]
cdef size_t width = index.shape[1]
cdef size_t i
cdef size_t j
cdef double* mat_ptr = &mat[0, 0]
cdef long long* index_ptr = &index[0, 0]
cdef size_t k
for i in range(length):
k = i * width
for j in range(width):
mat_ptr[index_ptr[k + j] * width + j] = val
# -*- coding: utf-8 -*-
"""
Created on 2017-4-26
@author: cheng.li
"""
import numpy as np
from numpy import zeros
from alphamind.aggregate import groupby
from alphamind.portfolio.impl import set_value_bool
from alphamind.portfolio.impl import set_value_double
def rank_build(er: np.ndarray, use_rank: int, groups: np.ndarray=None) -> np.ndarray:
if er.ndim == 1 or (er.shape[0] == 1 or er.shape[1] == 1):
""" fast path methods for single column er"""
neg_er = -er.flatten()
length = len(neg_er)
weights = zeros((length, 1))
if groups is not None:
group_ids = groupby(groups)
masks = zeros(length, dtype=bool)
for current_index in group_ids:
current_ordering = neg_er[current_index].argsort()
masks[current_index[current_ordering[:use_rank]]] = True
weights[masks] = 1.
else:
ordering = neg_er.argsort()
weights[ordering[:use_rank]] = 1.
return weights
else:
length = er.shape[0]
width = er.shape[1]
neg_er = -er
weights = zeros((length, width))
if groups is not None:
group_ids = groupby(groups)
masks = zeros((length, width), dtype=bool)
for current_index in group_ids:
current_ordering = neg_er[current_index].argsort(axis=0)
total_index = current_index[current_ordering[:use_rank]]
set_value_bool(masks.view(dtype=np.uint8), total_index)
for j in range(width):
weights[masks[:, j], j] = 1.
else:
ordering = neg_er.argsort(axis=0)
set_value_double(weights, ordering[:use_rank], 1.)
return weights
if __name__ == '__main__':
n_sample = 6
n_groups = 3
x = np.random.randn(n_sample)
groups = np.array([1, 1, 2, 1, 0, 2])
print(groups)
print(groupby(groups))
# -*- coding: utf-8 -*-
"""
Created on 2017-4-26
@author: cheng.li
"""
import numpy as np
from numpy import zeros
from alphamind.aggregate import groupby
from alphamind.portfolio.impl import set_value_bool
from alphamind.portfolio.impl import set_value_double
def rank_build(er: np.ndarray, use_rank: int, groups: np.ndarray=None) -> np.ndarray:
if er.ndim == 1 or (er.shape[0] == 1 or er.shape[1] == 1):
""" fast path methods for single column er"""
neg_er = -er.flatten()
length = len(neg_er)
weights = zeros((length, 1))
if groups is not None:
group_ids = groupby(groups)
masks = zeros(length, dtype=bool)
for current_index in group_ids:
current_ordering = neg_er[current_index].argsort()
masks[current_index[current_ordering[:use_rank]]] = True
weights[masks] = 1.
else:
ordering = neg_er.argsort()
weights[ordering[:use_rank]] = 1.
return weights
else:
length = er.shape[0]
width = er.shape[1]
neg_er = -er
weights = zeros((length, width))
if groups is not None:
group_ids = groupby(groups)
masks = zeros((length, width), dtype=bool)
for current_index in group_ids:
current_ordering = neg_er[current_index].argsort(axis=0)
total_index = current_index[current_ordering[:use_rank]]
set_value_bool(masks.view(dtype=np.uint8), total_index)
for j in range(width):
weights[masks[:, j], j] = 1.
else:
ordering = neg_er.argsort(axis=0)
set_value_double(weights, ordering[:use_rank], 1.)
return weights
if __name__ == '__main__':
n_sample = 6
n_groups = 3
x = np.random.randn(n_sample)
groups = np.array([1, 1, 2, 1, 0, 2])
print(groups)
print(groupby(groups))
print(rank_build(x, 1, groups))
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
import numpy as np
from alphamind.aggregate import aggregate
def simple_settle(weights: np.ndarray, ret_series: np.ndarray, groups: np.ndarray=None) -> np.ndarray:
if ret_series.ndim > 1:
ret_series = ret_series.flatten()
ret_mat = (ret_series * weights.T).T
if groups is not None:
return aggregate(groups, ret_mat, 'sum')
else:
return ret_mat.sum(axis=0)
if __name__ == '__main__':
from alphamind.aggregate import group_mapping_test
s = np.random.randint(2, 5, size=6)
print(s)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
import numpy as np
from alphamind.aggregate import aggregate
def simple_settle(weights: np.ndarray, ret_series: np.ndarray, groups: np.ndarray=None) -> np.ndarray:
if ret_series.ndim > 1:
ret_series = ret_series.flatten()
ret_mat = (ret_series * weights.T).T
if groups is not None:
return aggregate(groups, ret_mat, 'sum')
else:
return ret_mat.sum(axis=0)
if __name__ == '__main__':
from alphamind.aggregate import group_mapping_test
s = np.random.randint(2, 5, size=6)
print(s)
print(group_mapping_test(s))
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import unittest
import numpy as np
from sklearn.linear_model import LinearRegression
from alphamind.data.neutralize import neutralize
class TestNeutralize(unittest.TestCase):
def test_neutralize(self):
y = np.random.randn(3000, 4)
x = np.random.randn(3000, 10)
calc_res = neutralize(x, y)
model = LinearRegression(fit_intercept=False)
model.fit(x, y)
exp_res = y - x @ model.coef_.T
np.testing.assert_array_almost_equal(calc_res, exp_res)
def test_neutralize_with_group(self):
y = np.random.randn(3000, 4)
x = np.random.randn(3000, 10)
groups = np.random.randint(30, size=3000)
calc_res = neutralize(x, y, groups)
model = LinearRegression(fit_intercept=False)
for i in range(30):
curr_x = x[groups == i]
curr_y = y[groups == i]
model.fit(curr_x, curr_y)
exp_res = curr_y - curr_x @ model.coef_.T
np.testing.assert_array_almost_equal(calc_res[groups ==i ], exp_res)
if __name__ == '__main__':
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import unittest
import numpy as np
from sklearn.linear_model import LinearRegression
from alphamind.data.neutralize import neutralize
class TestNeutralize(unittest.TestCase):
def test_neutralize(self):
y = np.random.randn(3000, 4)
x = np.random.randn(3000, 10)
calc_res = neutralize(x, y)
model = LinearRegression(fit_intercept=False)
model.fit(x, y)
exp_res = y - x @ model.coef_.T
np.testing.assert_array_almost_equal(calc_res, exp_res)
def test_neutralize_with_group(self):
y = np.random.randn(3000, 4)
x = np.random.randn(3000, 10)
groups = np.random.randint(30, size=3000)
calc_res = neutralize(x, y, groups)
model = LinearRegression(fit_intercept=False)
for i in range(30):
curr_x = x[groups == i]
curr_y = y[groups == i]
model.fit(curr_x, curr_y)
exp_res = curr_y - curr_x @ model.coef_.T
np.testing.assert_array_almost_equal(calc_res[groups ==i ], exp_res)
if __name__ == '__main__':
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from scipy.stats import zscore
from alphamind.data.standardize import standardize
class TestStandardize(unittest.TestCase):
def test_standardize(self):
x = np.random.randn(3000, 10)
calc_zscore = standardize(x)
exp_zscore = zscore(x)
np.testing.assert_array_almost_equal(calc_zscore, exp_zscore)
def test_standardize_with_group(self):
x = np.random.randn(3000, 10)
groups = np.random.randint(10, 30, size=3000)
calc_zscore = standardize(x, groups)
exp_zscore = pd.DataFrame(x).groupby(groups).transform(lambda s: (s - s.mean(axis=0)) / s.std(axis=0))
np.testing.assert_array_almost_equal(calc_zscore, exp_zscore)
if __name__ == '__main__':
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from scipy.stats import zscore
from alphamind.data.standardize import standardize
class TestStandardize(unittest.TestCase):
def test_standardize(self):
x = np.random.randn(3000, 10)
calc_zscore = standardize(x)
exp_zscore = zscore(x)
np.testing.assert_array_almost_equal(calc_zscore, exp_zscore)
def test_standardize_with_group(self):
x = np.random.randn(3000, 10)
groups = np.random.randint(10, 30, size=3000)
calc_zscore = standardize(x, groups)
exp_zscore = pd.DataFrame(x).groupby(groups).transform(lambda s: (s - s.mean(axis=0)) / s.std(axis=0))
np.testing.assert_array_almost_equal(calc_zscore, exp_zscore)
if __name__ == '__main__':
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from alphamind.data.winsorize import winsorize_normal
class TestWinsorize(unittest.TestCase):
def test_winsorize_normal(self):
num_stds = 2
x = np.random.randn(3000, 10)
calc_winsorized = winsorize_normal(x, num_stds)
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
for i in range(np.size(calc_winsorized, 1)):
col_data = x[:, i]
col_data[col_data > upper_bound[i]] = upper_bound[i]
col_data[col_data < lower_bound[i]] = lower_bound[i]
calculated_col = calc_winsorized[:, i]
np.testing.assert_array_almost_equal(col_data, calculated_col)
def test_winsorize_normal_with_group(self):
num_stds = 2
x = np.random.randn(3000, 10)
groups = np.random.randint(10, 30, size=3000)
cal_winsorized = winsorize_normal(x, num_stds, groups)
def impl(x):
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
res = np.where(x > upper_bound, upper_bound, x)
res = np.where(res < lower_bound, lower_bound, res)
return res
exp_winsorized = pd.DataFrame(x).groupby(groups).transform(impl).values
np.testing.assert_array_almost_equal(cal_winsorized, exp_winsorized)
if __name__ == "__main__":
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from alphamind.data.winsorize import winsorize_normal
class TestWinsorize(unittest.TestCase):
def test_winsorize_normal(self):
num_stds = 2
x = np.random.randn(3000, 10)
calc_winsorized = winsorize_normal(x, num_stds)
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
for i in range(np.size(calc_winsorized, 1)):
col_data = x[:, i]
col_data[col_data > upper_bound[i]] = upper_bound[i]
col_data[col_data < lower_bound[i]] = lower_bound[i]
calculated_col = calc_winsorized[:, i]
np.testing.assert_array_almost_equal(col_data, calculated_col)
def test_winsorize_normal_with_group(self):
num_stds = 2
x = np.random.randn(3000, 10)
groups = np.random.randint(10, 30, size=3000)
cal_winsorized = winsorize_normal(x, num_stds, groups)
def impl(x):
std_values = x.std(axis=0)
mean_value = x.mean(axis=0)
lower_bound = mean_value - num_stds * std_values
upper_bound = mean_value + num_stds * std_values
res = np.where(x > upper_bound, upper_bound, x)
res = np.where(res < lower_bound, lower_bound, res)
return res
exp_winsorized = pd.DataFrame(x).groupby(groups).transform(impl).values
np.testing.assert_array_almost_equal(cal_winsorized, exp_winsorized)
if __name__ == "__main__":
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
"""
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from alphamind.portfolio.rankbuilder import rank_build
class TestRankBuild(unittest.TestCase):
def test_rank_build(self):
n_samples = 3000
n_included = 300
n_portfolios = range(10)
for n_portfolio in n_portfolios:
x = np.random.randn(n_samples, n_portfolio)
calc_weights = rank_build(x, n_included)
expected_weights = np.zeros((len(x), n_portfolio))
masks = (-x).argsort(axis=0).argsort(axis=0) < n_included
for j in range(x.shape[1]):
expected_weights[masks[:, j], j] = 1.
np.testing.assert_array_almost_equal(calc_weights, expected_weights)
def test_rank_build_with_group(self):
n_samples = 3000
n_include = 10
n_groups = 30
n_portfolios = range(10)
for n_portfolio in n_portfolios:
x = np.random.randn(n_samples, n_portfolio)
groups = np.random.randint(n_groups, size=n_samples)
calc_weights = rank_build(x, n_include, groups)
grouped_ordering = pd.DataFrame(-x).groupby(groups).rank()
expected_weights = np.zeros((len(x), n_portfolio))
masks = (grouped_ordering <= n_include).values
for j in range(x.shape[1]):
expected_weights[masks[:, j], j] = 1.
np.testing.assert_array_almost_equal(calc_weights, expected_weights)
if __name__ == '__main__':
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-27
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from alphamind.portfolio.rankbuilder import rank_build
class TestRankBuild(unittest.TestCase):
def test_rank_build(self):
n_samples = 3000
n_included = 300
n_portfolios = range(10)
for n_portfolio in n_portfolios:
x = np.random.randn(n_samples, n_portfolio)
calc_weights = rank_build(x, n_included)
expected_weights = np.zeros((len(x), n_portfolio))
masks = (-x).argsort(axis=0).argsort(axis=0) < n_included
for j in range(x.shape[1]):
expected_weights[masks[:, j], j] = 1.
np.testing.assert_array_almost_equal(calc_weights, expected_weights)
def test_rank_build_with_group(self):
n_samples = 3000
n_include = 10
n_groups = 30
n_portfolios = range(10)
for n_portfolio in n_portfolios:
x = np.random.randn(n_samples, n_portfolio)
groups = np.random.randint(n_groups, size=n_samples)
calc_weights = rank_build(x, n_include, groups)
grouped_ordering = pd.DataFrame(-x).groupby(groups).rank()
expected_weights = np.zeros((len(x), n_portfolio))
masks = (grouped_ordering <= n_include).values
for j in range(x.shape[1]):
expected_weights[masks[:, j], j] = 1.
np.testing.assert_array_almost_equal(calc_weights, expected_weights)
if __name__ == '__main__':
unittest.main()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from alphamind.settlement.simplesettle import simple_settle
class TestSimpleSettle(unittest.TestCase):
def test_simples_settle(self):
n_samples = 3000
n_portfolio = 3
weights = np.random.randn(n_samples, n_portfolio)
ret_series = np.random.randn(n_samples)
calc_ret = simple_settle(weights, ret_series)
ret_series.shape = -1, 1
expected_ret = (weights * ret_series).sum(axis=0)
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
ret_series = np.random.randn(n_samples, 1)
calc_ret = simple_settle(weights, ret_series)
expected_ret = (weights * ret_series).sum(axis=0)
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
def test_simple_settle_with_group(self):
n_samples = 3000
n_portfolio = 3
n_groups = 30
weights = np.random.randn(n_samples, n_portfolio)
ret_series = np.random.randn(n_samples)
groups = np.random.randint(n_groups, size=n_samples)
calc_ret = simple_settle(weights, ret_series, groups)
ret_series.shape = -1, 1
ret_mat = weights * ret_series
expected_ret = pd.DataFrame(ret_mat).groupby(groups, sort=False).sum().values
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
ret_series = np.random.randn(n_samples, 1)
calc_ret = simple_settle(weights, ret_series, groups)
ret_mat = weights * ret_series
expected_ret = pd.DataFrame(ret_mat).groupby(groups, sort=False).sum().values
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
if __name__ == '__main__':
# -*- coding: utf-8 -*-
"""
Created on 2017-4-28
@author: cheng.li
"""
import unittest
import numpy as np
import pandas as pd
from alphamind.settlement.simplesettle import simple_settle
class TestSimpleSettle(unittest.TestCase):
def test_simples_settle(self):
n_samples = 3000
n_portfolio = 3
weights = np.random.randn(n_samples, n_portfolio)
ret_series = np.random.randn(n_samples)
calc_ret = simple_settle(weights, ret_series)
ret_series.shape = -1, 1
expected_ret = (weights * ret_series).sum(axis=0)
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
ret_series = np.random.randn(n_samples, 1)
calc_ret = simple_settle(weights, ret_series)
expected_ret = (weights * ret_series).sum(axis=0)
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
def test_simple_settle_with_group(self):
n_samples = 3000
n_portfolio = 3
n_groups = 30
weights = np.random.randn(n_samples, n_portfolio)
ret_series = np.random.randn(n_samples)
groups = np.random.randint(n_groups, size=n_samples)
calc_ret = simple_settle(weights, ret_series, groups)
ret_series.shape = -1, 1
ret_mat = weights * ret_series
expected_ret = pd.DataFrame(ret_mat).groupby(groups, sort=False).sum().values
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
ret_series = np.random.randn(n_samples, 1)
calc_ret = simple_settle(weights, ret_series, groups)
ret_mat = weights * ret_series
expected_ret = pd.DataFrame(ret_mat).groupby(groups, sort=False).sum().values
np.testing.assert_array_almost_equal(calc_ret, expected_ret)
if __name__ == '__main__':
unittest.main()
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
from alphamind.utilities import add_parent_path
add_parent_path(__file__, 3)
from alphamind.tests.data.test_neutralize import TestNeutralize
from alphamind.tests.data.test_standardize import TestStandardize
from alphamind.tests.data.test_winsorize import TestWinsorize
from alphamind.tests.portfolio.test_rankbuild import TestRankBuild
from alphamind.tests.settlement.test_simplesettle import TestSimpleSettle
from alphamind.utilities import alpha_logger
from alphamind.utilities import TestRunner
if __name__ == '__main__':
runner = TestRunner([TestNeutralize,
TestStandardize,
TestWinsorize,
TestRankBuild,
TestSimpleSettle],
alpha_logger)
runner.run()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
from alphamind.utilities import add_parent_path
add_parent_path(__file__, 3)
from alphamind.tests.data.test_neutralize import TestNeutralize
from alphamind.tests.data.test_standardize import TestStandardize
from alphamind.tests.data.test_winsorize import TestWinsorize
from alphamind.tests.portfolio.test_rankbuild import TestRankBuild
from alphamind.tests.settlement.test_simplesettle import TestSimpleSettle
from alphamind.utilities import alpha_logger
from alphamind.utilities import TestRunner
if __name__ == '__main__':
runner = TestRunner([TestNeutralize,
TestStandardize,
TestWinsorize,
TestRankBuild,
TestSimpleSettle],
alpha_logger)
runner.run()
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import os
import sys
import logging
import unittest
alpha_logger = logging.getLogger('ALPHA_MIND')
ch = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
alpha_logger.addHandler(ch)
alpha_logger.setLevel(logging.INFO)
def add_parent_path(name, level):
current_path = os.path.abspath(name)
sys.path.append(os.path.sep.join(current_path.split(os.path.sep)[:-level]))
class TestRunner(object):
def __init__(self,
test_cases,
logger):
self.suite = unittest.TestSuite()
self.logger = logger
for case in test_cases:
tests = unittest.TestLoader().loadTestsFromTestCase(case)
self.suite.addTests(tests)
def run(self):
self.logger.info('Python ' + sys.version)
res = unittest.TextTestRunner(verbosity=3).run(self.suite)
if len(res.errors) >= 1 or len(res.failures) >= 1:
sys.exit(-1)
else:
sys.exit(0)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import os
import sys
import logging
import unittest
alpha_logger = logging.getLogger('ALPHA_MIND')
ch = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
alpha_logger.addHandler(ch)
alpha_logger.setLevel(logging.INFO)
def add_parent_path(name, level):
current_path = os.path.abspath(name)
sys.path.append(os.path.sep.join(current_path.split(os.path.sep)[:-level]))
class TestRunner(object):
def __init__(self,
test_cases,
logger):
self.suite = unittest.TestSuite()
self.logger = logger
for case in test_cases:
tests = unittest.TestLoader().loadTestsFromTestCase(case)
self.suite.addTests(tests)
def run(self):
self.logger.info('Python ' + sys.version)
res = unittest.TextTestRunner(verbosity=3).run(self.suite)
if len(res.errors) >= 1 or len(res.failures) >= 1:
sys.exit(-1)
else:
sys.exit(0)
cython >= 0.25.2
numpy >= 1.12.1
scikit-learn >= 0.18.1
scipy >= 0.19.0
cython >= 0.25.2
numpy >= 1.12.1
scikit-learn >= 0.18.1
scipy >= 0.19.0
pandas >= 0.19.2
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import platform
import sys
from setuptools import setup
from setuptools import find_packages
from distutils.extension import Extension
import numpy as np
import Cython
from Cython.Build import cythonize
Cython.Compiler.Options.annotate = True
VERSION = "0.1.0"
if "--line_trace" in sys.argv:
line_trace = True
print("Build with line trace enabled ...")
sys.argv.remove("--line_trace")
else:
line_trace = False
ext_modules = ['alphamind/aggregate.pyx',
'alphamind/portfolio/impl.pyx']
def generate_extensions(ext_modules, line_trace=False):
extensions = []
if line_trace:
print("define cython trace to True ...")
define_macros = [('CYTHON_TRACE', 1), ('CYTHON_TRACE_NOGIL', 1)]
else:
define_macros = []
for pyxfile in ext_modules:
ext = Extension(name='.'.join(pyxfile.split('/'))[:-4],
sources=[pyxfile],
define_macros=define_macros)
extensions.append(ext)
return extensions
if platform.system() != "Windows":
import multiprocessing
n_cpu = multiprocessing.cpu_count()
else:
n_cpu = 0
ext_modules_settings = cythonize(generate_extensions(ext_modules, line_trace),
compiler_directives={'embedsignature': True, 'linetrace': line_trace},
nthreads=n_cpu)
setup(
name='Alpha-Mind',
version=VERSION,
packages=find_packages(),
url='',
license='',
author='wegamekinglc',
author_email='',
ext_modules=ext_modules_settings,
include_dirs=[np.get_include()],
description=''
)
# -*- coding: utf-8 -*-
"""
Created on 2017-4-25
@author: cheng.li
"""
import platform
import sys
from setuptools import setup
from setuptools import find_packages
from distutils.extension import Extension
import numpy as np
import Cython
from Cython.Build import cythonize
Cython.Compiler.Options.annotate = True
VERSION = "0.1.0"
if "--line_trace" in sys.argv:
line_trace = True
print("Build with line trace enabled ...")
sys.argv.remove("--line_trace")
else:
line_trace = False
ext_modules = ['alphamind/aggregate.pyx',
'alphamind/portfolio/impl.pyx']
def generate_extensions(ext_modules, line_trace=False):
extensions = []
if line_trace:
print("define cython trace to True ...")
define_macros = [('CYTHON_TRACE', 1), ('CYTHON_TRACE_NOGIL', 1)]
else:
define_macros = []
for pyxfile in ext_modules:
ext = Extension(name='.'.join(pyxfile.split('/'))[:-4],
sources=[pyxfile],
define_macros=define_macros)
extensions.append(ext)
return extensions
if platform.system() != "Windows":
import multiprocessing
n_cpu = multiprocessing.cpu_count()
else:
n_cpu = 0
ext_modules_settings = cythonize(generate_extensions(ext_modules, line_trace),
compiler_directives={'embedsignature': True, 'linetrace': line_trace},
nthreads=n_cpu)
setup(
name='Alpha-Mind',
version=VERSION,
packages=find_packages(),
url='',
license='',
author='wegamekinglc',
author_email='',
ext_modules=ext_modules_settings,
include_dirs=[np.get_include()],
description=''
)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment