Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
8a4af8cd
Commit
8a4af8cd
authored
Jun 15, 2018
by
wegamekinglc
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
using more options as optimal
parent
1214d5ec
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
90 additions
and
38 deletions
+90
-38
strategy.py
alphamind/strategy/strategy.py
+90
-38
No files found.
alphamind/strategy/strategy.py
View file @
8a4af8cd
...
@@ -271,6 +271,7 @@ class Strategy(object):
...
@@ -271,6 +271,7 @@ class Strategy(object):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
import
os
from
matplotlib
import
pyplot
as
plt
from
matplotlib
import
pyplot
as
plt
from
dask.distributed
import
Client
from
dask.distributed
import
Client
from
PyFin.api
import
CSQuantiles
from
PyFin.api
import
CSQuantiles
...
@@ -290,82 +291,133 @@ if __name__ == '__main__':
...
@@ -290,82 +291,133 @@ if __name__ == '__main__':
mpl
.
rcParams
[
'font.sans-serif'
]
=
[
'SimHei'
]
mpl
.
rcParams
[
'font.sans-serif'
]
=
[
'SimHei'
]
mpl
.
rcParams
[
'axes.unicode_minus'
]
=
False
mpl
.
rcParams
[
'axes.unicode_minus'
]
=
False
start_date
=
'2010-05-01'
# Back test parameter settings
end_date
=
'2018-05-17'
start_date
=
'2016-01-01'
end_date
=
'2018-06-11'
freq
=
'10b'
freq
=
'10b'
neutralized_risk
=
None
industry_name
=
'sw_adj'
industry_level
=
1
turn_over_target
=
0.4
batch
=
1
horizon
=
map_freq
(
freq
)
weights_bandwidth
=
0.02
universe
=
Universe
(
'zz800'
)
universe
=
Universe
(
'zz800'
)
dask_client
=
Client
(
'10.63.6.176:8786'
)
data_source
=
os
.
environ
[
'DB_URI'
]
benchmark_code
=
300
method
=
'risk_neutral'
# Model settings
alpha_factors
=
{
alpha_factors
=
{
'f1'
:
CSQuantiles
(
LAST
(
'ILLIQUIDITY'
)
*
LAST
(
'NegMktValue'
),
groups
=
'sw1_adj'
),
'ep_q_cs'
:
CSQuantiles
(
LAST
(
'ep_q'
),
groups
=
'sw1_adj'
),
'f2'
:
CSQuantiles
(
'con_pe'
,
groups
=
'sw1_adj'
)
'roe_q_cs'
:
CSQuantiles
(
LAST
(
'roe_q'
),
groups
=
'sw1_adj'
),
'SGRO_cs'
:
CSQuantiles
(
LAST
(
'SGRO'
),
groups
=
'sw1_adj'
),
'GREV_cs'
:
CSQuantiles
(
LAST
(
'GREV'
),
groups
=
'sw1_adj'
),
'con_peg_rolling_cs'
:
CSQuantiles
(
LAST
(
'con_peg_rolling'
),
groups
=
'sw1_adj'
),
'con_pe_rolling_order_cs'
:
CSQuantiles
(
LAST
(
'con_pe_rolling_order'
),
groups
=
'sw1_adj'
),
'IVR_cs'
:
CSQuantiles
(
LAST
(
'IVR'
),
groups
=
'sw1_adj'
),
'ILLIQUIDITY_cs'
:
CSQuantiles
(
LAST
(
'ILLIQUIDITY'
)
*
LAST
(
'NegMktValue'
),
groups
=
'sw1_adj'
),
'DividendPaidRatio_cs'
:
CSQuantiles
(
LAST
(
'DividendPaidRatio'
),
groups
=
'sw1_adj'
),
}
}
weights
=
{
'f1'
:
1.
,
'f2'
:
0.
}
weights
=
dict
(
ep_q_cs
=
1.
,
roe_q_cs
=
1.
,
# alpha_model = XGBTrainer(objective='reg:linear',
SGRO_cs
=
0.0
,
# booster='gbtree',
GREV_cs
=
0.0
,
# n_estimators=300,
con_peg_rolling_cs
=-
0.25
,
# eval_sample=0.25,
con_pe_rolling_order_cs
=-
0.25
,
# features=alpha_factors)
IVR_cs
=
0.5
,
ILLIQUIDITY_cs
=
0.5
,
DividendPaidRatio_cs
=
0.5
)
alpha_model
=
ConstLinearModel
(
features
=
alpha_factors
,
weights
=
weights
)
alpha_model
=
ConstLinearModel
(
features
=
alpha_factors
,
weights
=
weights
)
data_meta
=
DataMeta
(
freq
=
freq
,
data_meta
=
DataMeta
(
freq
=
freq
,
universe
=
universe
,
universe
=
universe
,
batch
=
1
,
batch
=
1
,
neutralized_risk
=
neutralized_risk
,
neutralized_risk
=
None
,
pre_process
=
None
,
pre_process
=
None
,
post_process
=
None
,
post_process
=
None
,
warm_start
=
1
)
data_source
=
data_source
)
industries
=
industry_list
(
'sw_adj'
,
1
)
# Constraintes settings
total_risk_names
=
[
'total'
,
'benchmark'
]
+
industries
industry_names
=
industry_list
(
industry_name
,
industry_level
)
constraint_risk
=
[
'SIZE'
,
'BETA'
]
total_risk_names
=
constraint_risk
+
[
'benchmark'
,
'total'
]
all_styles
=
risk_styles
+
industry_names
+
macro_styles
b_type
=
[]
b_type
=
[]
l_val
=
[]
l_val
=
[]
u_val
=
[]
u_val
=
[]
previous_pos
=
pd
.
DataFrame
()
rets
=
[]
turn_overs
=
[]
leverags
=
[]
for
name
in
total_risk_names
:
for
name
in
total_risk_names
:
if
name
==
'total'
:
if
name
==
'benchmark'
:
b_type
.
append
(
BoundaryType
.
RELATIVE
)
l_val
.
append
(
0.8
)
u_val
.
append
(
1.0
)
elif
name
==
'total'
:
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
.0
)
l_val
.
append
(
.0
)
u_val
.
append
(
.0
)
u_val
.
append
(
.0
)
elif
name
==
'benchmark'
:
elif
name
==
'EARNYILD'
:
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
0.00
)
u_val
.
append
(
0.60
)
elif
name
==
'GROWTH'
:
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
-
0.05
)
u_val
.
append
(
0.05
)
elif
name
==
'MOMENTUM'
:
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
0.20
)
u_val
.
append
(
0.20
)
elif
name
==
'SIZE'
:
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
-
0.05
)
u_val
.
append
(
0.05
)
elif
name
==
'LIQUIDTY'
:
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
-
0.40
)
u_val
.
append
(
-
0.0
)
elif
benchmark_code
==
905
and
name
not
in
[
"计算机"
,
"医药生物"
,
"国防军工"
,
"信息服务"
,
"机械设备"
]
and
name
in
industry_names
:
b_type
.
append
(
BoundaryType
.
RELATIVE
)
b_type
.
append
(
BoundaryType
.
RELATIVE
)
l_val
.
append
(
0.8
)
l_val
.
append
(
0.8
)
u_val
.
append
(
1.0
)
u_val
.
append
(
1.0
)
elif
benchmark_code
==
300
and
name
in
[
"银行"
,
"保险"
,
"证券"
,
"多元金融"
]:
b_type
.
append
(
BoundaryType
.
RELATIVE
)
l_val
.
append
(
0.70
)
u_val
.
append
(
0.90
)
elif
name
in
[
"计算机"
,
"医药生物"
,
"国防军工"
,
"信息服务"
,
"机械设备"
]:
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
0.0
)
u_val
.
append
(
0.05
)
else
:
else
:
b_type
.
append
(
BoundaryType
.
MAXABSREL
)
b_type
.
append
(
BoundaryType
.
ABSOLUTE
)
l_val
.
append
(
(
0.00
,
0.0
)
)
l_val
.
append
(
-
0.002
)
u_val
.
append
(
(
0.00
,
0.0
)
)
u_val
.
append
(
0.002
)
bounds
=
create_box_bounds
(
total_risk_names
,
b_type
,
l_val
,
u_val
)
bounds
=
create_box_bounds
(
total_risk_names
,
b_type
,
l_val
,
u_val
)
running_setting
=
RunningSetting
(
lbound
=
None
,
# Running settings
ubound
=
None
,
running_setting
=
RunningSetting
(
weights_bandwidth
=
weights_bandwidth
,
weights_bandwidth
=
0.01
,
rebalance_method
=
method
,
rebalance_method
=
'risk_neutral'
,
bounds
=
bounds
,
bounds
=
bounds
,
target_vol
=
0.05
,
turn_over_target
=
turn_over_target
)
turn_over_target
=
0.4
)
# Strategy
strategy
=
Strategy
(
alpha_model
,
strategy
=
Strategy
(
alpha_model
,
data_meta
,
data_meta
,
universe
=
universe
,
universe
=
universe
,
start_date
=
start_date
,
start_date
=
start_date
,
end_date
=
end_date
,
end_date
=
end_date
,
freq
=
freq
,
freq
=
freq
,
benchmark
=
906
,
benchmark
=
benchmark_code
)
dask_client
=
dask_client
)
strategy
.
prepare_backtest_data
()
ret_df
,
positions
=
strategy
.
run
(
running_setting
)
strategy
.
prepare_backtest_data
()
ret_df
.
rename
(
columns
=
{
'excess_return'
:
'超额收益'
,
'turn_over'
:
'换手率'
},
inplace
=
True
)
ret_df
,
positions
=
strategy
.
run
(
running_setting
=
running_setting
)
ret_df
[[
'超额收益'
,
'换手率'
]]
.
cumsum
()
.
plot
(
secondary_y
=
'换手率'
)
\ No newline at end of file
plt
.
title
(
"原始ILLIQUIDITY因子"
)
plt
.
show
()
positions
.
to_csv
(
'd:/positions.csv'
,
encoding
=
'gbk'
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment