Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
95848c8d
Commit
95848c8d
authored
Jun 06, 2018
by
wegamekinglc
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added benchmark parameter in fetch_dx_return
parent
afea552f
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
140 additions
and
7 deletions
+140
-7
sqlengine.py
alphamind/data/engines/sqlengine.py
+33
-7
test_sql_engine.py
alphamind/tests/data/engines/test_sql_engine.py
+107
-0
No files found.
alphamind/data/engines/sqlengine.py
View file @
95848c8d
...
@@ -202,7 +202,8 @@ class SqlEngine(object):
...
@@ -202,7 +202,8 @@ class SqlEngine(object):
offset
:
int
=
0
,
offset
:
int
=
0
,
neutralized_risks
:
list
=
None
,
neutralized_risks
:
list
=
None
,
pre_process
=
None
,
pre_process
=
None
,
post_process
=
None
)
->
pd
.
DataFrame
:
post_process
=
None
,
benchmark
:
int
=
None
)
->
pd
.
DataFrame
:
start_date
=
ref_date
start_date
=
ref_date
if
not
expiry_date
:
if
not
expiry_date
:
...
@@ -223,6 +224,18 @@ class SqlEngine(object):
...
@@ -223,6 +224,18 @@ class SqlEngine(object):
df
=
pd
.
read_sql
(
query
,
self
.
session
.
bind
)
.
dropna
()
df
=
pd
.
read_sql
(
query
,
self
.
session
.
bind
)
.
dropna
()
df
=
df
[
df
.
trade_date
==
ref_date
]
df
=
df
[
df
.
trade_date
==
ref_date
]
if
benchmark
:
stats
=
self
.
_create_stats
(
IndexMarket
,
horizon
,
offset
,
code_attr
=
'indexCode'
)
query
=
select
([
IndexMarket
.
trade_date
,
stats
])
.
where
(
and_
(
IndexMarket
.
trade_date
.
between
(
start_date
,
end_date
),
IndexMarket
.
indexCode
==
benchmark
)
)
df2
=
pd
.
read_sql
(
query
,
self
.
session
.
bind
)
.
dropna
()
ind_ret
=
df2
[
df2
.
trade_date
==
ref_date
][
'dx'
]
.
values
[
0
]
df
[
'dx'
]
=
df
[
'dx'
]
-
ind_ret
if
neutralized_risks
:
if
neutralized_risks
:
_
,
risk_exp
=
self
.
fetch_risk_model
(
ref_date
,
codes
)
_
,
risk_exp
=
self
.
fetch_risk_model
(
ref_date
,
codes
)
df
=
pd
.
merge
(
df
,
risk_exp
,
on
=
'code'
)
.
dropna
()
df
=
pd
.
merge
(
df
,
risk_exp
,
on
=
'code'
)
.
dropna
()
...
@@ -231,7 +244,7 @@ class SqlEngine(object):
...
@@ -231,7 +244,7 @@ class SqlEngine(object):
risk_factors
=
df
[
neutralized_risks
]
.
values
,
risk_factors
=
df
[
neutralized_risks
]
.
values
,
post_process
=
post_process
)
post_process
=
post_process
)
return
df
[[
'code'
,
'dx'
]]
.
drop_duplicates
([
'code'
])
return
df
[[
'code'
,
'dx'
]]
def
fetch_dx_return_range
(
self
,
def
fetch_dx_return_range
(
self
,
universe
,
universe
,
...
@@ -239,7 +252,8 @@ class SqlEngine(object):
...
@@ -239,7 +252,8 @@ class SqlEngine(object):
end_date
:
str
=
None
,
end_date
:
str
=
None
,
dates
:
Iterable
[
str
]
=
None
,
dates
:
Iterable
[
str
]
=
None
,
horizon
:
int
=
0
,
horizon
:
int
=
0
,
offset
:
int
=
0
)
->
pd
.
DataFrame
:
offset
:
int
=
0
,
benchmark
:
int
=
None
)
->
pd
.
DataFrame
:
if
dates
:
if
dates
:
start_date
=
dates
[
0
]
start_date
=
dates
[
0
]
...
@@ -266,8 +280,20 @@ class SqlEngine(object):
...
@@ -266,8 +280,20 @@ class SqlEngine(object):
cond
)
cond
)
)
)
df
=
pd
.
read_sql
(
query
,
self
.
session
.
bind
)
.
dropna
()
df
=
pd
.
read_sql
(
query
,
self
.
session
.
bind
)
.
dropna
()
.
set_index
(
'trade_date'
)
return
df
.
sort_values
([
'trade_date'
,
'code'
])
if
benchmark
:
stats
=
self
.
_create_stats
(
IndexMarket
,
horizon
,
offset
,
code_attr
=
'indexCode'
)
query
=
select
([
IndexMarket
.
trade_date
,
stats
])
.
where
(
and_
(
IndexMarket
.
trade_date
.
between
(
start_date
,
end_date
),
IndexMarket
.
indexCode
==
benchmark
)
)
df2
=
pd
.
read_sql
(
query
,
self
.
session
.
bind
)
.
dropna
()
.
set_index
(
'trade_date'
)
df
[
'dx'
]
=
df
[
'dx'
]
.
values
-
df2
.
loc
[
df
.
index
][
'dx'
]
.
values
return
df
.
reset_index
()
.
sort_values
([
'trade_date'
,
'code'
])
def
fetch_dx_return_index
(
self
,
def
fetch_dx_return_index
(
self
,
ref_date
:
str
,
ref_date
:
str
,
...
@@ -1049,7 +1075,7 @@ if __name__ == '__main__':
...
@@ -1049,7 +1075,7 @@ if __name__ == '__main__':
ref_date
=
'2017-05-03'
ref_date
=
'2017-05-03'
universe
=
Universe
(
'zz800'
)
universe
=
Universe
(
'zz800'
)
dates
=
bizDatesList
(
'china.sse'
,
'2018-05-01'
,
'2018-05-10'
)
dates
=
bizDatesList
(
'china.sse'
,
'2018-05-01'
,
'2018-05-10'
)
dates
=
[
d
.
strftime
(
'
%
Y-
%
m-
%
d'
)
for
d
in
dates
]
codes
=
engine
.
fetch_codes
(
ref_date
,
universe
)
res
=
engine
.
fetch_
risk_model_range
(
universe
,
dates
=
dates
,
model_type
=
'factor'
)
res
=
engine
.
fetch_
dx_return_range
(
universe
,
dates
=
dates
,
horizon
=
4
,
benchmark
=
300
)
print
(
res
)
print
(
res
)
\ No newline at end of file
alphamind/tests/data/engines/test_sql_engine.py
View file @
95848c8d
...
@@ -141,6 +141,70 @@ class TestSqlEngine(unittest.TestCase):
...
@@ -141,6 +141,70 @@ class TestSqlEngine(unittest.TestCase):
res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
np
.
testing
.
assert_array_almost_equal
(
dx_return
.
dx
.
values
,
res
.
chgPct
.
values
)
np
.
testing
.
assert_array_almost_equal
(
dx_return
.
dx
.
values
,
res
.
chgPct
.
values
)
def
test_sql_engine_fetch_dx_return_with_benchmark
(
self
):
horizon
=
4
offset
=
1
benchmark
=
300
ref_date
=
self
.
ref_date
universe
=
Universe
(
'zz500'
)
+
Universe
(
'zz1000'
)
codes
=
self
.
engine
.
fetch_codes
(
ref_date
,
universe
)
dx_return
=
self
.
engine
.
fetch_dx_return
(
ref_date
,
codes
,
horizon
=
horizon
,
offset
=
offset
,
benchmark
=
benchmark
)
start_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
'2b'
)
end_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
'6b'
)
query
=
select
([
Market
.
code
,
Market
.
chgPct
])
.
where
(
and_
(
Market
.
trade_date
.
between
(
start_date
,
end_date
),
Market
.
code
.
in_
(
dx_return
.
code
.
unique
()
.
tolist
())
)
)
df
=
pd
.
read_sql
(
query
,
con
=
self
.
engine
.
engine
)
res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
query
=
select
([
IndexMarket
.
indexCode
.
label
(
'code'
),
IndexMarket
.
chgPct
])
.
where
(
and_
(
IndexMarket
.
trade_date
.
between
(
start_date
,
end_date
),
IndexMarket
.
indexCode
==
benchmark
)
)
df
=
pd
.
read_sql
(
query
,
con
=
self
.
engine
.
engine
)
b_res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
np
.
testing
.
assert_array_almost_equal
(
dx_return
.
dx
.
values
,
res
.
chgPct
.
values
-
b_res
.
chgPct
.
values
)
horizon
=
4
offset
=
0
ref_date
=
self
.
ref_date
universe
=
Universe
(
'zz500'
)
+
Universe
(
'zz1000'
)
codes
=
self
.
engine
.
fetch_codes
(
ref_date
,
universe
)
dx_return
=
self
.
engine
.
fetch_dx_return
(
ref_date
,
codes
,
horizon
=
horizon
,
offset
=
offset
,
benchmark
=
benchmark
)
start_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
'1b'
)
end_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
'5b'
)
query
=
select
([
Market
.
code
,
Market
.
chgPct
])
.
where
(
and_
(
Market
.
trade_date
.
between
(
start_date
,
end_date
),
Market
.
code
.
in_
(
dx_return
.
code
.
unique
()
.
tolist
())
)
)
df
=
pd
.
read_sql
(
query
,
con
=
self
.
engine
.
engine
)
res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
query
=
select
([
IndexMarket
.
indexCode
.
label
(
'code'
),
IndexMarket
.
chgPct
])
.
where
(
and_
(
IndexMarket
.
trade_date
.
between
(
start_date
,
end_date
),
IndexMarket
.
indexCode
==
benchmark
)
)
df
=
pd
.
read_sql
(
query
,
con
=
self
.
engine
.
engine
)
b_res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
np
.
testing
.
assert_array_almost_equal
(
dx_return
.
dx
.
values
,
res
.
chgPct
.
values
-
b_res
.
chgPct
.
values
)
def
test_sql_engine_fetch_dx_return_range
(
self
):
def
test_sql_engine_fetch_dx_return_range
(
self
):
ref_dates
=
makeSchedule
(
advanceDateByCalendar
(
'china.sse'
,
self
.
ref_date
,
'-6m'
),
ref_dates
=
makeSchedule
(
advanceDateByCalendar
(
'china.sse'
,
self
.
ref_date
,
'-6m'
),
self
.
ref_date
,
self
.
ref_date
,
...
@@ -171,6 +235,49 @@ class TestSqlEngine(unittest.TestCase):
...
@@ -171,6 +235,49 @@ class TestSqlEngine(unittest.TestCase):
calculated_return
=
dx_return
[
dx_return
.
trade_date
==
ref_date
]
calculated_return
=
dx_return
[
dx_return
.
trade_date
==
ref_date
]
np
.
testing
.
assert_array_almost_equal
(
calculated_return
.
dx
.
values
,
res
.
chgPct
.
values
)
np
.
testing
.
assert_array_almost_equal
(
calculated_return
.
dx
.
values
,
res
.
chgPct
.
values
)
def
test_sql_engine_fetch_dx_return_range_with_benchmark
(
self
):
ref_dates
=
makeSchedule
(
advanceDateByCalendar
(
'china.sse'
,
self
.
ref_date
,
'-6m'
),
self
.
ref_date
,
'60b'
,
'china.sse'
)
universe
=
Universe
(
'zz500'
)
+
Universe
(
'zz1000'
)
benchmark
=
300
dx_return
=
self
.
engine
.
fetch_dx_return_range
(
universe
,
dates
=
ref_dates
,
horizon
=
4
,
offset
=
1
,
benchmark
=
benchmark
)
codes
=
self
.
engine
.
fetch_codes_range
(
universe
,
dates
=
ref_dates
)
groups
=
codes
.
groupby
(
'trade_date'
)
for
ref_date
,
g
in
groups
:
start_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
'2b'
)
end_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
'6b'
)
query
=
select
([
Market
.
code
,
Market
.
chgPct
])
.
where
(
and_
(
Market
.
trade_date
.
between
(
start_date
,
end_date
),
Market
.
code
.
in_
(
g
.
code
.
unique
()
.
tolist
())
)
)
df
=
pd
.
read_sql
(
query
,
con
=
self
.
engine
.
engine
)
res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
query
=
select
([
IndexMarket
.
indexCode
.
label
(
'code'
),
IndexMarket
.
chgPct
])
.
where
(
and_
(
IndexMarket
.
trade_date
.
between
(
start_date
,
end_date
),
IndexMarket
.
indexCode
==
benchmark
)
)
df
=
pd
.
read_sql
(
query
,
con
=
self
.
engine
.
engine
)
b_res
=
df
.
groupby
(
'code'
)
.
apply
(
lambda
x
:
np
.
log
(
1.
+
x
)
.
sum
())
calculated_return
=
dx_return
[
dx_return
.
trade_date
==
ref_date
]
np
.
testing
.
assert_array_almost_equal
(
calculated_return
.
dx
.
values
,
res
.
chgPct
.
values
-
b_res
.
chgPct
.
values
)
def
test_sql_engine_fetch_dx_return_with_universe_adjustment
(
self
):
def
test_sql_engine_fetch_dx_return_with_universe_adjustment
(
self
):
ref_dates
=
makeSchedule
(
advanceDateByCalendar
(
'china.sse'
,
'2017-01-26'
,
'-6m'
),
ref_dates
=
makeSchedule
(
advanceDateByCalendar
(
'china.sse'
,
'2017-01-26'
,
'-6m'
),
'2017-01-26'
,
'2017-01-26'
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment