Commit 9e9d23d1 authored by Dr.李's avatar Dr.李
parents 79043808 cfe51fb4
......@@ -16,16 +16,12 @@ import alphamind.utilities as utils
def neutralize(x: np.ndarray,
y: np.ndarray,
groups: np.ndarray=None,
detail: bool=False,
weights: np.ndarray=None) \
detail: bool=False) \
-> Union[np.ndarray, Tuple[np.ndarray, Dict]]:
if y.ndim == 1:
y = y.reshape((-1, 1))
if weights is None:
weights = np.ones(len(y), dtype=float)
output_dict = {}
if detail:
......@@ -41,17 +37,17 @@ def neutralize(x: np.ndarray,
if detail:
for diff_loc in index_diff:
curr_idx = order[start:diff_loc + 1]
curr_x, b = _sub_step(x, y, weights, curr_idx, res)
curr_x, b = _sub_step(x, y, curr_idx, res)
exposure[curr_idx, :, :] = b
explained[curr_idx] = ls_explain(curr_x, b)
start = diff_loc + 1
else:
for diff_loc in index_diff:
curr_idx = order[start:diff_loc + 1]
_sub_step(x, y, weights, curr_idx, res)
_sub_step(x, y, curr_idx, res)
start = diff_loc + 1
else:
b = ls_fit(x, y, weights)
b = ls_fit(x, y)
res = ls_res(x, y, b)
if detail:
......@@ -65,17 +61,16 @@ def neutralize(x: np.ndarray,
@nb.njit(nogil=True, cache=True)
def _sub_step(x, y, w, curr_idx, res) -> Tuple[np.ndarray, np.ndarray]:
curr_x, curr_y, curr_w = x[curr_idx], y[curr_idx], w[curr_idx]
b = ls_fit(curr_x, curr_y, curr_w)
def _sub_step(x, y, curr_idx, res) -> Tuple[np.ndarray, np.ndarray]:
curr_x, curr_y= x[curr_idx], y[curr_idx]
b = ls_fit(curr_x, curr_y)
res[curr_idx] = ls_res(curr_x, curr_y, b)
return curr_x, b
@nb.njit(nogil=True, cache=True)
def ls_fit(x: np.ndarray, y: np.ndarray, w: np.ndarray) -> np.ndarray:
x_bar = x.T * w
b = np.linalg.solve(x_bar @ x, x_bar @ y)
def ls_fit(x: np.ndarray, y: np.ndarray) -> np.ndarray:
b = np.linalg.lstsq(x, y, rcond=-1)[0]
return b
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment