Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
a0912c91
Commit
a0912c91
authored
Aug 24, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fixed bug for risk styles and update example
parent
8c31e011
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
13 additions
and
13 deletions
+13
-13
model_training.py
alphamind/examples/model_training.py
+11
-12
data_preparing.py
alphamind/model/data_preparing.py
+2
-1
No files found.
alphamind/examples/model_training.py
View file @
a0912c91
...
...
@@ -18,22 +18,21 @@ plt.style.use('ggplot')
'''
Settings:
universe - zz500
neutralize - 'SIZE' + all industries
benchmark - zz500
base factors - ['CFinc1', 'CHV', 'VAL', 'BDTO', 'RVOL']
quantiles - 5
start_date - 2012-01-01
end_date - 2017-08-01
re-balance - 1 week
training - every 4 week
universe - zz500
neutralize - all industries
benchmark - zz500
base factors - all the risk styles
quantiles - 5
start_date - 2012-01-01
end_date - 2017-08-01
re-balance - 1 week
training - every 4 week
'''
engine
=
SqlEngine
(
'postgresql+psycopg2://postgres:A12345678!@10.63.6.220/alpha'
)
universe
=
Universe
(
'zz500'
,
[
'zz500'
])
neutralize_risk
=
[
'SIZE'
]
+
industry_styles
alpha_factors
=
[
'CFinc1'
,
'CHV'
,
'VAL'
,
'BDTO'
,
'RVOL'
]
neutralize_risk
=
industry_styles
alpha_factors
=
risk_styles
benchmark
=
905
n_bins
=
5
frequency
=
'1w'
...
...
alphamind/model/data_preparing.py
View file @
a0912c91
...
...
@@ -136,7 +136,8 @@ def fetch_data_package(engine: SqlEngine,
if
neutralized_risk
:
risk_df
=
engine
.
fetch_risk_model_range
(
universe
,
dates
=
dates
,
risk_model
=
risk_model
)[
1
]
risk_df
=
risk_df
[[
'Date'
,
'Code'
]
+
neutralized_risk
]
.
dropna
()
used_neutralized_risk
=
list
(
set
(
neutralized_risk
)
.
difference
(
transformer
.
names
))
risk_df
=
risk_df
[[
'Date'
,
'Code'
]
+
used_neutralized_risk
]
.
dropna
()
train_x
=
pd
.
merge
(
factor_df
,
risk_df
,
on
=
[
'Date'
,
'Code'
])
return_df
=
pd
.
merge
(
return_df
,
risk_df
,
on
=
[
'Date'
,
'Code'
])[[
'Date'
,
'Code'
,
'dx'
]]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment