Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
a6e9e0c8
Commit
a6e9e0c8
authored
Jan 11, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added xgb trainer models
parent
c0e2023c
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
35 additions
and
19 deletions
+35
-19
api.py
alphamind/api.py
+2
-0
models.py
alphamind/data/dbmodel/models.py
+1
-1
__init__.py
alphamind/model/__init__.py
+2
-0
loader.py
alphamind/model/loader.py
+3
-0
treemodel.py
alphamind/model/treemodel.py
+1
-1
test_treemodel.py
alphamind/tests/model/test_treemodel.py
+26
-17
No files found.
alphamind/api.py
View file @
a6e9e0c8
...
@@ -33,6 +33,7 @@ from alphamind.model import RandomForestRegressor
...
@@ -33,6 +33,7 @@ from alphamind.model import RandomForestRegressor
from
alphamind.model
import
RandomForestClassifier
from
alphamind.model
import
RandomForestClassifier
from
alphamind.model
import
XGBRegressor
from
alphamind.model
import
XGBRegressor
from
alphamind.model
import
XGBClassifier
from
alphamind.model
import
XGBClassifier
from
alphamind.model
import
XGBTrainer
from
alphamind.model
import
load_model
from
alphamind.model
import
load_model
from
alphamind.model.data_preparing
import
fetch_data_package
from
alphamind.model.data_preparing
import
fetch_data_package
from
alphamind.model.data_preparing
import
fetch_train_phase
from
alphamind.model.data_preparing
import
fetch_train_phase
...
@@ -74,6 +75,7 @@ __all__ = [
...
@@ -74,6 +75,7 @@ __all__ = [
'RandomForestClassifier'
,
'RandomForestClassifier'
,
'XGBRegressor'
,
'XGBRegressor'
,
'XGBClassifier'
,
'XGBClassifier'
,
'XGBTrainer'
,
'load_model'
,
'load_model'
,
'NaiveExecutor'
,
'NaiveExecutor'
,
'ThresholdExecutor'
,
'ThresholdExecutor'
,
...
...
alphamind/data/dbmodel/models.py
View file @
a6e9e0c8
...
@@ -1954,5 +1954,5 @@ class OutrightTmp(Base):
...
@@ -1954,5 +1954,5 @@ class OutrightTmp(Base):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
from
sqlalchemy
import
create_engine
from
sqlalchemy
import
create_engine
engine
=
create_engine
(
'postgres+psycopg2://postgres:
A12345678!@10.63.6.220
/alpha'
)
engine
=
create_engine
(
'postgres+psycopg2://postgres:
we083826@101.132.104.118
/alpha'
)
Base
.
metadata
.
create_all
(
engine
)
Base
.
metadata
.
create_all
(
engine
)
alphamind/model/__init__.py
View file @
a6e9e0c8
...
@@ -14,6 +14,7 @@ from alphamind.model.treemodel import RandomForestRegressor
...
@@ -14,6 +14,7 @@ from alphamind.model.treemodel import RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
from
alphamind.model.treemodel
import
XGBClassifier
from
alphamind.model.treemodel
import
XGBTrainer
from
alphamind.model.loader
import
load_model
from
alphamind.model.loader
import
load_model
...
@@ -26,4 +27,5 @@ __all__ = ['LinearRegression',
...
@@ -26,4 +27,5 @@ __all__ = ['LinearRegression',
'RandomForestClassifier'
,
'RandomForestClassifier'
,
'XGBRegressor'
,
'XGBRegressor'
,
'XGBClassifier'
,
'XGBClassifier'
,
'XGBTrainer'
,
'load_model'
]
'load_model'
]
\ No newline at end of file
alphamind/model/loader.py
View file @
a6e9e0c8
...
@@ -14,6 +14,7 @@ from alphamind.model.treemodel import RandomForestRegressor
...
@@ -14,6 +14,7 @@ from alphamind.model.treemodel import RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
from
alphamind.model.treemodel
import
XGBClassifier
from
alphamind.model.treemodel
import
XGBTrainer
def
load_model
(
model_desc
:
dict
)
->
ModelBase
:
def
load_model
(
model_desc
:
dict
)
->
ModelBase
:
...
@@ -37,5 +38,7 @@ def load_model(model_desc: dict) -> ModelBase:
...
@@ -37,5 +38,7 @@ def load_model(model_desc: dict) -> ModelBase:
return
XGBRegressor
.
load
(
model_desc
)
return
XGBRegressor
.
load
(
model_desc
)
elif
'XGBClassifier'
in
model_name_parts
:
elif
'XGBClassifier'
in
model_name_parts
:
return
XGBClassifier
.
load
(
model_desc
)
return
XGBClassifier
.
load
(
model_desc
)
elif
'XGBTrainer'
in
model_name_parts
:
return
XGBTrainer
.
load
(
model_desc
)
else
:
else
:
raise
ValueError
(
'{0} is not currently supported in model loader.'
.
format
(
model_name
))
raise
ValueError
(
'{0} is not currently supported in model loader.'
.
format
(
model_name
))
alphamind/model/treemodel.py
View file @
a6e9e0c8
...
@@ -162,7 +162,7 @@ class XGBClassifier(ModelBase):
...
@@ -162,7 +162,7 @@ class XGBClassifier(ModelBase):
class
XGBTrainer
(
ModelBase
):
class
XGBTrainer
(
ModelBase
):
def
__init__
(
self
,
def
__init__
(
self
,
objective
,
objective
=
'binary:logistic'
,
booster
=
'gbtree'
,
booster
=
'gbtree'
,
tree_method
=
'hist'
,
tree_method
=
'hist'
,
n_estimators
:
int
=
100
,
n_estimators
:
int
=
100
,
...
...
alphamind/tests/model/test_treemodel.py
View file @
a6e9e0c8
...
@@ -12,16 +12,18 @@ from alphamind.model.treemodel import RandomForestRegressor
...
@@ -12,16 +12,18 @@ from alphamind.model.treemodel import RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
RandomForestClassifier
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
from
alphamind.model.treemodel
import
XGBClassifier
from
alphamind.model.treemodel
import
XGBTrainer
class
TestTreeModel
(
unittest
.
TestCase
):
class
TestTreeModel
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
x
=
np
.
random
.
randn
(
1000
,
10
)
self
.
y
=
np
.
random
.
randn
(
1000
)
def
test_random_forest_regress_persistence
(
self
):
def
test_random_forest_regress_persistence
(
self
):
model
=
RandomForestRegressor
(
features
=
list
(
range
(
10
)))
model
=
RandomForestRegressor
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
model
.
fit
(
self
.
x
,
self
.
y
)
y
=
np
.
random
.
randn
(
1000
)
model
.
fit
(
x
,
y
)
desc
=
model
.
save
()
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
new_model
=
load_model
(
desc
)
...
@@ -32,11 +34,8 @@ class TestTreeModel(unittest.TestCase):
...
@@ -32,11 +34,8 @@ class TestTreeModel(unittest.TestCase):
def
test_random_forest_classify_persistence
(
self
):
def
test_random_forest_classify_persistence
(
self
):
model
=
RandomForestClassifier
(
features
=
list
(
range
(
10
)))
model
=
RandomForestClassifier
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
y
=
np
.
where
(
self
.
y
>
0
,
1
,
0
)
y
=
np
.
random
.
randn
(
1000
)
model
.
fit
(
self
.
x
,
y
)
y
=
np
.
where
(
y
>
0
,
1
,
0
)
model
.
fit
(
x
,
y
)
desc
=
model
.
save
()
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
new_model
=
load_model
(
desc
)
...
@@ -47,10 +46,7 @@ class TestTreeModel(unittest.TestCase):
...
@@ -47,10 +46,7 @@ class TestTreeModel(unittest.TestCase):
def
test_xgb_regress_persistence
(
self
):
def
test_xgb_regress_persistence
(
self
):
model
=
XGBRegressor
(
features
=
list
(
range
(
10
)))
model
=
XGBRegressor
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
model
.
fit
(
self
.
x
,
self
.
y
)
y
=
np
.
random
.
randn
(
1000
)
model
.
fit
(
x
,
y
)
desc
=
model
.
save
()
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
new_model
=
load_model
(
desc
)
...
@@ -61,11 +57,24 @@ class TestTreeModel(unittest.TestCase):
...
@@ -61,11 +57,24 @@ class TestTreeModel(unittest.TestCase):
def
test_xgb_classify_persistence
(
self
):
def
test_xgb_classify_persistence
(
self
):
model
=
XGBClassifier
(
features
=
list
(
range
(
10
)))
model
=
XGBClassifier
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
y
=
np
.
where
(
self
.
y
>
0
,
1
,
0
)
y
=
np
.
random
.
randn
(
1000
)
model
.
fit
(
self
.
x
,
y
)
y
=
np
.
where
(
y
>
0
,
1
,
0
)
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
self
.
assertEqual
(
model
.
features
,
new_model
.
features
)
sample_x
=
np
.
random
.
randn
(
100
,
10
)
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
model
.
fit
(
x
,
y
)
def
test_xgb_trainer_persisence
(
self
):
model
=
XGBTrainer
(
features
=
list
(
range
(
10
)),
objective
=
'binary:logistic'
,
booster
=
'gbtree'
,
tree_method
=
'hist'
,
n_estimators
=
200
)
y
=
np
.
where
(
self
.
y
>
0
,
1
,
0
)
model
.
fit
(
self
.
x
,
y
)
desc
=
model
.
save
()
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
new_model
=
load_model
(
desc
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment