Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
b4804c14
Commit
b4804c14
authored
Aug 04, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added mean variance optimizer
parent
b03929b9
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
20 additions
and
32 deletions
+20
-32
factoranalysis.py
alphamind/analysis/factoranalysis.py
+3
-0
meanvariancebuilder.py
alphamind/portfolio/meanvariancebuilder.py
+17
-32
No files found.
alphamind/analysis/factoranalysis.py
View file @
b4804c14
...
@@ -228,6 +228,9 @@ def factor_analysis(factors: pd.DataFrame,
...
@@ -228,6 +228,9 @@ def factor_analysis(factors: pd.DataFrame,
elif
method
==
'ls'
or
method
==
'long_short'
:
elif
method
==
'ls'
or
method
==
'long_short'
:
weights
=
build_portfolio
(
er
,
weights
=
build_portfolio
(
er
,
builder
=
method
)
builder
=
method
)
elif
method
==
'mv'
or
method
==
'mean_variance'
:
weights
=
build_portfolio
(
er
,
builder
=
method
)
if
detail_analysis
:
if
detail_analysis
:
analysis
=
data_pack
.
settle
(
weights
,
d1returns
)
analysis
=
data_pack
.
settle
(
weights
,
d1returns
)
...
...
alphamind/portfolio/meanvariancebuilder.py
View file @
b4804c14
...
@@ -8,10 +8,7 @@ Created on 2017-6-27
...
@@ -8,10 +8,7 @@ Created on 2017-6-27
import
numpy
as
np
import
numpy
as
np
from
typing
import
Union
from
typing
import
Union
from
typing
import
Tuple
from
typing
import
Tuple
from
cvxopt
import
matrix
from
alphamind.cython.optimizers
import
QPOptimizer
from
cvxopt
import
solvers
solvers
.
options
[
'show_progress'
]
=
False
def
mean_variance_builder
(
er
:
np
.
ndarray
,
def
mean_variance_builder
(
er
:
np
.
ndarray
,
...
@@ -25,39 +22,27 @@ def mean_variance_builder(er: np.ndarray,
...
@@ -25,39 +22,27 @@ def mean_variance_builder(er: np.ndarray,
lbound
=
lbound
-
bm
lbound
=
lbound
-
bm
ubound
=
ubound
-
bm
ubound
=
ubound
-
bm
transposed_risk_exposure
=
risk_exposure
.
T
risk_target
=
risk_target
-
transposed_risk_exposure
@
bm
# set up problem for net position
n
=
len
(
er
)
P
=
lam
*
matrix
(
cov
)
q
=
-
matrix
(
er
)
G1
=
np
.
zeros
((
2
*
n
,
n
))
h1
=
np
.
zeros
(
2
*
n
)
for
i
in
range
(
n
):
G1
[
i
,
i
]
=
1.
h1
[
i
]
=
ubound
[
i
]
G1
[
i
+
n
,
i
]
=
-
1.
h1
[
i
+
n
]
=
-
lbound
[
i
]
m
=
len
(
transposed_risk_exposure
)
G2
=
np
.
concatenate
([
transposed_risk_exposure
,
-
transposed_risk_exposure
])
bm_risk
=
risk_exposure
.
T
@
bm
h2
=
np
.
zeros
(
2
*
m
)
for
i
in
range
(
m
):
clbound
=
risk_target
[
0
]
-
bm_risk
h2
[
i
]
=
risk_target
[
1
][
i
]
cubound
=
risk_target
[
1
]
-
bm_risk
h2
[
i
+
m
]
=
-
risk_target
[
0
][
i
]
G
=
matrix
(
np
.
concatenate
([
G1
,
G2
]))
optimizer
=
QPOptimizer
(
er
,
h
=
matrix
(
np
.
concatenate
([
h1
,
h2
]))
cov
,
lbound
,
ubound
,
risk_exposure
.
T
,
clbound
,
cubound
,
lam
)
sol
=
solvers
.
qp
(
P
,
q
,
G
,
h
)
if
optimizer
.
status
()
==
0
:
status
=
'optimal'
else
:
status
=
optimizer
.
status
()
return
s
ol
[
'status'
],
sol
[
'dual objective'
],
np
.
array
(
sol
[
'x'
])
.
flatten
()
+
bm
return
s
tatus
,
optimizer
.
feval
(),
optimizer
.
x_value
()
+
bm
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment