Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
b482c543
Commit
b482c543
authored
May 29, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
reimplementation of risk model and mean variance builder
parent
8b061a73
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
49 additions
and
69 deletions
+49
-69
meanvariancebuilder.py
alphamind/portfolio/meanvariancebuilder.py
+26
-63
riskmodel.py
alphamind/portfolio/riskmodel.py
+20
-2
test_meanvariancebuild.py
alphamind/tests/portfolio/test_meanvariancebuild.py
+3
-4
No files found.
alphamind/portfolio/meanvariancebuilder.py
View file @
b482c543
...
@@ -9,11 +9,9 @@ import numpy as np
...
@@ -9,11 +9,9 @@ import numpy as np
from
typing
import
Union
from
typing
import
Union
from
typing
import
Tuple
from
typing
import
Tuple
from
typing
import
Optional
from
typing
import
Optional
from
typing
import
Dict
from
alphamind.cython.optimizers
import
QPOptimizer
from
alphamind.cython.optimizers
import
QPOptimizer
from
alphamind.cython.optimizers
import
CVOptimizer
from
alphamind.cython.optimizers
import
CVOptimizer
from
alphamind.portfolio.riskmodel
import
RiskModel
from
alphamind.portfolio.riskmodel
import
FullRiskModel
from
alphamind.portfolio.riskmodel
import
FactorRiskModel
def
_create_bounds
(
lbound
,
def
_create_bounds
(
lbound
,
...
@@ -48,7 +46,7 @@ def _create_result(optimizer, bm):
...
@@ -48,7 +46,7 @@ def _create_result(optimizer, bm):
def
mean_variance_builder
(
er
:
np
.
ndarray
,
def
mean_variance_builder
(
er
:
np
.
ndarray
,
risk_model
:
RiskModel
,
risk_model
:
Dict
[
str
,
Union
[
None
,
np
.
ndarray
]]
,
bm
:
np
.
ndarray
,
bm
:
np
.
ndarray
,
lbound
:
Union
[
np
.
ndarray
,
float
],
lbound
:
Union
[
np
.
ndarray
,
float
],
ubound
:
Union
[
np
.
ndarray
,
float
],
ubound
:
Union
[
np
.
ndarray
,
float
],
...
@@ -57,40 +55,23 @@ def mean_variance_builder(er: np.ndarray,
...
@@ -57,40 +55,23 @@ def mean_variance_builder(er: np.ndarray,
lam
:
float
=
1.
)
->
Tuple
[
str
,
float
,
np
.
ndarray
]:
lam
:
float
=
1.
)
->
Tuple
[
str
,
float
,
np
.
ndarray
]:
lbound
,
ubound
,
cons_mat
,
clbound
,
cubound
=
_create_bounds
(
lbound
,
ubound
,
bm
,
risk_exposure
,
risk_target
)
lbound
,
ubound
,
cons_mat
,
clbound
,
cubound
=
_create_bounds
(
lbound
,
ubound
,
bm
,
risk_exposure
,
risk_target
)
if
isinstance
(
risk_model
,
FullRiskModel
):
optimizer
=
QPOptimizer
(
er
,
cov
=
risk_model
.
get_cov
()
risk_model
[
'cov'
],
optimizer
=
QPOptimizer
(
er
,
lbound
,
cov
,
ubound
,
lbound
,
cons_mat
,
ubound
,
clbound
,
cons_mat
,
cubound
,
clbound
,
lam
,
cubound
,
risk_model
[
'factor_cov'
],
lam
)
risk_model
[
'factor_loading'
],
elif
isinstance
(
risk_model
,
FactorRiskModel
):
risk_model
[
'idsync'
])
cov
=
None
factor_cov
=
risk_model
.
get_factor_cov
()
factor_loading
=
risk_model
.
get_risk_exp
()
idsync
=
risk_model
.
get_idsync
()
optimizer
=
QPOptimizer
(
er
,
cov
,
lbound
,
ubound
,
cons_mat
,
clbound
,
cubound
,
lam
,
factor_cov
,
factor_loading
,
idsync
)
else
:
raise
ValueError
(
"{0} is not recognized as valid risk model"
.
format
(
risk_model
))
return
_create_result
(
optimizer
,
bm
)
return
_create_result
(
optimizer
,
bm
)
def
target_vol_builder
(
er
:
np
.
ndarray
,
def
target_vol_builder
(
er
:
np
.
ndarray
,
risk_model
:
RiskModel
,
risk_model
:
Dict
[
str
,
Union
[
None
,
np
.
ndarray
]]
,
bm
:
np
.
ndarray
,
bm
:
np
.
ndarray
,
lbound
:
Union
[
np
.
ndarray
,
float
],
lbound
:
Union
[
np
.
ndarray
,
float
],
ubound
:
Union
[
np
.
ndarray
,
float
],
ubound
:
Union
[
np
.
ndarray
,
float
],
...
@@ -99,36 +80,18 @@ def target_vol_builder(er: np.ndarray,
...
@@ -99,36 +80,18 @@ def target_vol_builder(er: np.ndarray,
vol_target
:
float
=
1.
)
->
Tuple
[
str
,
float
,
np
.
ndarray
]:
vol_target
:
float
=
1.
)
->
Tuple
[
str
,
float
,
np
.
ndarray
]:
lbound
,
ubound
,
cons_mat
,
clbound
,
cubound
=
_create_bounds
(
lbound
,
ubound
,
bm
,
risk_exposure
,
risk_target
)
lbound
,
ubound
,
cons_mat
,
clbound
,
cubound
=
_create_bounds
(
lbound
,
ubound
,
bm
,
risk_exposure
,
risk_target
)
if
isinstance
(
risk_model
,
FullRiskModel
):
optimizer
=
CVOptimizer
(
er
,
cov
=
risk_model
.
get_cov
()
risk_model
[
'cov'
],
optimizer
=
CVOptimizer
(
er
,
lbound
,
cov
,
ubound
,
lbound
,
cons_mat
,
ubound
,
clbound
,
cons_mat
,
cubound
,
clbound
,
0.
,
cubound
,
vol_target
,
0.
,
risk_model
[
'factor_cov'
],
vol_target
)
risk_model
[
'factor_loading'
],
elif
isinstance
(
risk_model
,
FactorRiskModel
):
risk_model
[
'idsync'
])
cov
=
None
factor_cov
=
risk_model
.
get_factor_cov
()
factor_loading
=
risk_model
.
get_risk_exp
()
idsync
=
risk_model
.
get_idsync
()
optimizer
=
CVOptimizer
(
er
,
cov
,
lbound
,
ubound
,
cons_mat
,
clbound
,
cubound
,
0.
,
vol_target
,
factor_cov
,
factor_loading
,
idsync
)
else
:
raise
ValueError
(
"{0} is not recognized as valid risk model"
.
format
(
risk_model
))
return
_create_result
(
optimizer
,
bm
)
return
_create_result
(
optimizer
,
bm
)
...
...
alphamind/portfolio/riskmodel.py
View file @
b482c543
...
@@ -11,7 +11,9 @@ import pandas as pd
...
@@ -11,7 +11,9 @@ import pandas as pd
class
RiskModel
(
metaclass
=
abc
.
ABCMeta
):
class
RiskModel
(
metaclass
=
abc
.
ABCMeta
):
pass
def
get_risk_profile
(
self
):
pass
class
FullRiskModel
(
RiskModel
):
class
FullRiskModel
(
RiskModel
):
...
@@ -26,6 +28,14 @@ class FullRiskModel(RiskModel):
...
@@ -26,6 +28,14 @@ class FullRiskModel(RiskModel):
else
:
else
:
return
self
.
sec_cov
.
values
return
self
.
sec_cov
.
values
def
get_risk_profile
(
self
,
codes
:
List
[
int
]
=
None
):
return
dict
(
cov
=
self
.
get_cov
(
codes
),
factor_cov
=
None
,
factor_loading
=
None
,
idsync
=
None
)
class
FactorRiskModel
(
RiskModel
):
class
FactorRiskModel
(
RiskModel
):
...
@@ -54,4 +64,12 @@ class FactorRiskModel(RiskModel):
...
@@ -54,4 +64,12 @@ class FactorRiskModel(RiskModel):
if
codes
:
if
codes
:
return
self
.
idsync
[
codes
]
.
values
return
self
.
idsync
[
codes
]
.
values
else
:
else
:
return
self
.
idsync
.
values
return
self
.
idsync
.
values
\ No newline at end of file
def
get_risk_profile
(
self
,
codes
:
List
[
int
]
=
None
):
return
dict
(
cov
=
None
,
factor_cov
=
self
.
get_factor_cov
(),
factor_loading
=
self
.
get_risk_exp
(
codes
),
idsync
=
self
.
get_idsync
(
codes
)
)
\ No newline at end of file
alphamind/tests/portfolio/test_meanvariancebuild.py
View file @
b482c543
...
@@ -8,7 +8,6 @@ Created on 2017-6-27
...
@@ -8,7 +8,6 @@ Created on 2017-6-27
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
from
alphamind.portfolio.riskmodel
import
FullRiskModel
from
alphamind.portfolio.meanvariancebuilder
import
mean_variance_builder
from
alphamind.portfolio.meanvariancebuilder
import
mean_variance_builder
from
alphamind.portfolio.meanvariancebuilder
import
target_vol_builder
from
alphamind.portfolio.meanvariancebuilder
import
target_vol_builder
...
@@ -31,7 +30,7 @@ class TestMeanVarianceBuild(unittest.TestCase):
...
@@ -31,7 +30,7 @@ class TestMeanVarianceBuild(unittest.TestCase):
[
1.
,
0.
,
1.
]])
.
T
[
1.
,
0.
,
1.
]])
.
T
risk_target
=
(
np
.
array
([
bm
.
sum
(),
0.3
]),
np
.
array
([
bm
.
sum
(),
0.7
]))
risk_target
=
(
np
.
array
([
bm
.
sum
(),
0.3
]),
np
.
array
([
bm
.
sum
(),
0.7
]))
model
=
FullRiskModel
(
pd
.
DataFrame
(
cov
)
)
model
=
dict
(
cov
=
cov
,
factor_cov
=
None
,
factor_loading
=
None
,
idsync
=
None
)
status
,
_
,
x
=
mean_variance_builder
(
er
,
model
,
bm
,
lbound
,
ubound
,
risk_exposure
,
risk_target
)
status
,
_
,
x
=
mean_variance_builder
(
er
,
model
,
bm
,
lbound
,
ubound
,
risk_exposure
,
risk_target
)
self
.
assertTrue
(
status
==
'optimal'
)
self
.
assertTrue
(
status
==
'optimal'
)
...
@@ -58,7 +57,7 @@ class TestMeanVarianceBuild(unittest.TestCase):
...
@@ -58,7 +57,7 @@ class TestMeanVarianceBuild(unittest.TestCase):
[
1.
,
0.
,
1.
]])
.
T
[
1.
,
0.
,
1.
]])
.
T
risk_target
=
(
np
.
array
([
bm
.
sum
(),
0.3
]),
np
.
array
([
bm
.
sum
(),
0.7
]))
risk_target
=
(
np
.
array
([
bm
.
sum
(),
0.3
]),
np
.
array
([
bm
.
sum
(),
0.7
]))
model
=
FullRiskModel
(
pd
.
DataFrame
(
cov
)
)
model
=
dict
(
cov
=
cov
,
factor_cov
=
None
,
factor_loading
=
None
,
idsync
=
None
)
status
,
_
,
x
=
mean_variance_builder
(
er
,
model
,
bm
,
lbound
,
ubound
,
risk_exposure
,
risk_target
,
lam
=
100
)
status
,
_
,
x
=
mean_variance_builder
(
er
,
model
,
bm
,
lbound
,
ubound
,
risk_exposure
,
risk_target
,
lam
=
100
)
self
.
assertTrue
(
status
==
'optimal'
)
self
.
assertTrue
(
status
==
'optimal'
)
...
@@ -82,7 +81,7 @@ class TestMeanVarianceBuild(unittest.TestCase):
...
@@ -82,7 +81,7 @@ class TestMeanVarianceBuild(unittest.TestCase):
risk_exposure
=
np
.
array
([[
1.
,
1.
,
1.
]])
.
T
risk_exposure
=
np
.
array
([[
1.
,
1.
,
1.
]])
.
T
risk_target
=
(
np
.
array
([
bm
.
sum
()]),
np
.
array
([
bm
.
sum
()]))
risk_target
=
(
np
.
array
([
bm
.
sum
()]),
np
.
array
([
bm
.
sum
()]))
model
=
FullRiskModel
(
pd
.
DataFrame
(
cov
)
)
model
=
dict
(
cov
=
cov
,
factor_cov
=
None
,
factor_loading
=
None
,
idsync
=
None
)
status
,
_
,
x
=
target_vol_builder
(
er
,
model
,
bm
,
lbound
,
ubound
,
risk_exposure
,
risk_target
,
0.1
)
status
,
_
,
x
=
target_vol_builder
(
er
,
model
,
bm
,
lbound
,
ubound
,
risk_exposure
,
risk_target
,
0.1
)
self
.
assertTrue
(
status
==
'optimal'
)
self
.
assertTrue
(
status
==
'optimal'
)
self
.
assertTrue
(
np
.
all
(
x
<=
ubound
+
1.e-6
))
self
.
assertTrue
(
np
.
all
(
x
<=
ubound
+
1.e-6
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment