Commit b654d26d authored by Dr.李's avatar Dr.李

fixed dimensional error

parent cf561224
...@@ -32,7 +32,7 @@ def cs_impl(ref_date, ...@@ -32,7 +32,7 @@ def cs_impl(ref_date,
total_risk_exp = total_data[constraint_risk] total_risk_exp = total_data[constraint_risk]
er = total_data[factor_name].values.astype(float) er = total_data[[factor_name]].values.astype(float)
er = factor_processing(er, [winsorize_normal, standardize], total_risk_exp.values, [winsorize_normal, standardize]).flatten() er = factor_processing(er, [winsorize_normal, standardize], total_risk_exp.values, [winsorize_normal, standardize]).flatten()
industry = total_data.industry_name.values industry = total_data.industry_name.values
...@@ -43,7 +43,7 @@ def cs_impl(ref_date, ...@@ -43,7 +43,7 @@ def cs_impl(ref_date,
target_pos['weight'] = target_pos['weight'] / target_pos['weight'].abs().sum() target_pos['weight'] = target_pos['weight'] / target_pos['weight'].abs().sum()
target_pos = pd.merge(target_pos, dx_returns, on=['code']) target_pos = pd.merge(target_pos, dx_returns, on=['code'])
target_pos = pd.merge(target_pos, total_data[['code'] + constraint_risk], on=['code']) target_pos = pd.merge(target_pos, total_data[['code'] + constraint_risk], on=['code'])
activate_weight = target_pos.weight.values activate_weight = target_pos[['weight']].values
excess_return = np.exp(target_pos.dx.values) - 1. excess_return = np.exp(target_pos.dx.values) - 1.
excess_return = factor_processing(excess_return, [winsorize_normal, standardize], total_risk_exp.values, [winsorize_normal, standardize]).flatten() excess_return = factor_processing(excess_return, [winsorize_normal, standardize], total_risk_exp.values, [winsorize_normal, standardize]).flatten()
port_ret = np.log(activate_weight @ excess_return + 1.) port_ret = np.log(activate_weight @ excess_return + 1.)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment