Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
baab31a8
Commit
baab31a8
authored
Feb 12, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update data preparing
parent
03e6435a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
28 additions
and
16 deletions
+28
-16
composer.py
alphamind/model/composer.py
+20
-14
data_preparing.py
alphamind/model/data_preparing.py
+8
-2
No files found.
alphamind/model/composer.py
View file @
baab31a8
...
...
@@ -128,26 +128,32 @@ def train_model(ref_date: str,
return
base_model
def
fetch_predict_data
(
ref_date
:
str
,
alpha_model
:
ModelBase
,
data_meta
):
predict_data
=
fetch_predict_phase
(
data_meta
.
engine
,
alpha_model
.
formulas
,
ref_date
,
data_meta
.
freq
,
data_meta
.
universe
,
data_meta
.
batch
,
data_meta
.
neutralized_risk
,
data_meta
.
risk_model
,
data_meta
.
pre_process
,
data_meta
.
post_process
,
data_meta
.
warm_start
,
fillna
=
True
)
return
predict_data
[
'predict'
][
'code'
],
predict_data
[
'predict'
][
'x'
]
def
predict_by_model
(
ref_date
:
str
,
alpha_model
:
ModelBase
,
data_meta
:
DataMeta
=
None
,
x_values
:
pd
.
DataFrame
=
None
,
codes
:
Iterable
[
int
]
=
None
):
if
x_values
is
None
:
predict_data
=
fetch_predict_phase
(
data_meta
.
engine
,
alpha_model
.
formulas
,
ref_date
,
data_meta
.
freq
,
data_meta
.
universe
,
data_meta
.
batch
,
data_meta
.
neutralized_risk
,
data_meta
.
risk_model
,
data_meta
.
pre_process
,
data_meta
.
post_process
,
data_meta
.
warm_start
)
x_values
=
predict_data
[
'predict'
][
'x'
]
codes
=
predict_data
[
'predict'
][
'code'
]
codes
,
x_values
=
fetch_predict_data
(
ref_date
,
alpha_model
,
data_meta
)
return
pd
.
DataFrame
(
alpha_model
.
predict
(
x_values
)
.
flatten
(),
index
=
codes
)
...
...
alphamind/model/data_preparing.py
View file @
baab31a8
...
...
@@ -335,7 +335,8 @@ def fetch_predict_phase(engine,
risk_model
:
str
=
'short'
,
pre_process
:
Iterable
[
object
]
=
None
,
post_process
:
Iterable
[
object
]
=
None
,
warm_start
:
int
=
0
):
warm_start
:
int
=
0
,
fillna
:
str
=
None
):
if
isinstance
(
alpha_factors
,
Transformer
):
transformer
=
alpha_factors
else
:
...
...
@@ -352,7 +353,12 @@ def fetch_predict_phase(engine,
dateRule
=
BizDayConventions
.
Following
,
dateGenerationRule
=
DateGeneration
.
Backward
)
factor_df
=
engine
.
fetch_factor_range
(
universe
,
factors
=
transformer
,
dates
=
dates
)
.
dropna
()
factor_df
=
engine
.
fetch_factor_range
(
universe
,
factors
=
transformer
,
dates
=
dates
)
if
fillna
:
factor_df
=
factor_df
.
groupby
(
'trade_date'
)
.
apply
(
lambda
x
:
x
.
fillna
(
x
.
median
()))
.
reset_index
(
drop
=
True
)
.
dropna
()
else
:
factor_df
=
factor_df
.
dropna
()
names
=
transformer
.
names
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment