Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
beb0dcd3
Commit
beb0dcd3
authored
May 10, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
small enhancements
parent
104437fd
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
33 additions
and
12 deletions
+33
-12
neutralize.py
alphamind/data/neutralize.py
+10
-4
linearmodel.py
alphamind/model/linearmodel.py
+23
-8
No files found.
alphamind/data/neutralize.py
View file @
beb0dcd3
...
@@ -38,10 +38,7 @@ def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None, output_exp
...
@@ -38,10 +38,7 @@ def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None, output_exp
groups_ids
=
groupby
(
groups
)
groups_ids
=
groupby
(
groups
)
for
curr_idx
in
groups_ids
.
values
():
for
curr_idx
in
groups_ids
.
values
():
curr_x
=
x
[
curr_idx
]
curr_x
,
b
=
_sub_step
(
x
,
y
,
curr_idx
,
res
)
curr_y
=
y
[
curr_idx
]
b
=
ls_fit
(
curr_x
,
curr_y
)
res
[
curr_idx
]
=
ls_res
(
curr_x
,
curr_y
,
b
)
if
output_exposure
:
if
output_exposure
:
for
i
in
range
(
exposure
.
shape
[
2
]):
for
i
in
range
(
exposure
.
shape
[
2
]):
exposure
[
curr_idx
,
:,
i
]
=
b
[:,
i
]
exposure
[
curr_idx
,
:,
i
]
=
b
[:,
i
]
...
@@ -69,6 +66,15 @@ def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None, output_exp
...
@@ -69,6 +66,15 @@ def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray=None, output_exp
return
res
return
res
@
nb
.
njit
(
nogil
=
True
,
cache
=
True
)
def
_sub_step
(
x
,
y
,
curr_idx
,
res
):
curr_x
=
x
[
curr_idx
]
curr_y
=
y
[
curr_idx
]
b
=
ls_fit
(
curr_x
,
curr_y
)
res
[
curr_idx
]
=
ls_res
(
curr_x
,
curr_y
,
b
)
return
curr_x
,
b
@
nb
.
njit
(
nogil
=
True
,
cache
=
True
)
@
nb
.
njit
(
nogil
=
True
,
cache
=
True
)
def
ls_fit
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
)
->
np
.
ndarray
:
def
ls_fit
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
)
->
np
.
ndarray
:
x_bar
=
x
.
T
x_bar
=
x
.
T
...
...
alphamind/model/linearmodel.py
View file @
beb0dcd3
...
@@ -7,6 +7,7 @@ Created on 2017-5-10
...
@@ -7,6 +7,7 @@ Created on 2017-5-10
from
typing
import
Union
from
typing
import
Union
import
numpy
as
np
import
numpy
as
np
import
numba
as
nb
from
alphamind.cyimpl
import
groupby
from
alphamind.cyimpl
import
groupby
from
alphamind.data.neutralize
import
ls_fit
from
alphamind.data.neutralize
import
ls_fit
...
@@ -20,7 +21,7 @@ class LinearModel(object):
...
@@ -20,7 +21,7 @@ class LinearModel(object):
self
.
model_parameter
=
_train
(
x
,
y
,
groups
)
self
.
model_parameter
=
_train
(
x
,
y
,
groups
)
def
predict
(
self
,
x
,
groups
=
None
):
def
predict
(
self
,
x
,
groups
=
None
):
if
groups
is
not
None
and
isinstance
(
self
.
model_parameter
,
dict
)
:
if
groups
is
not
None
and
self
.
model_parameter
.
ndim
==
2
:
names
=
np
.
unique
(
groups
)
names
=
np
.
unique
(
groups
)
return
multiple_prediction
(
names
,
self
.
model_parameter
,
x
,
groups
)
return
multiple_prediction
(
names
,
self
.
model_parameter
,
x
,
groups
)
elif
self
.
model_parameter
is
None
:
elif
self
.
model_parameter
is
None
:
...
@@ -31,6 +32,7 @@ class LinearModel(object):
...
@@ -31,6 +32,7 @@ class LinearModel(object):
raise
ValueError
(
"grouped x value can't be used for vanilla linear model"
)
raise
ValueError
(
"grouped x value can't be used for vanilla linear model"
)
@
nb
.
njit
(
nogil
=
True
,
cache
=
True
)
def
multiple_prediction
(
names
,
model_parames
,
x
,
groups
):
def
multiple_prediction
(
names
,
model_parames
,
x
,
groups
):
pred_v
=
np
.
zeros
(
x
.
shape
[
0
])
pred_v
=
np
.
zeros
(
x
.
shape
[
0
])
for
name
in
names
:
for
name
in
names
:
...
@@ -40,22 +42,28 @@ def multiple_prediction(names, model_parames, x, groups):
...
@@ -40,22 +42,28 @@ def multiple_prediction(names, model_parames, x, groups):
return
pred_v
return
pred_v
def
_train
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
)
->
Union
[
np
.
ndarray
,
dict
]
:
def
_train
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
,
groups
:
np
.
ndarray
=
None
)
->
np
.
ndarray
:
if
groups
is
None
:
if
groups
is
None
:
return
ls_fit
(
x
,
y
)
return
ls_fit
(
x
,
y
)
else
:
else
:
groups_ids
=
groupby
(
groups
)
groups_ids
=
groupby
(
groups
)
res_beta
=
{}
res_beta
=
np
.
zeros
((
max
(
groups_ids
.
keys
())
+
1
,
x
.
shape
[
1
]))
for
k
,
curr_idx
in
groups_ids
.
items
():
for
k
,
curr_idx
in
groups_ids
.
items
():
curr_x
=
x
[
curr_idx
]
_train_sub_group
(
x
,
y
,
k
,
curr_idx
,
res_beta
)
curr_y
=
y
[
curr_idx
]
res_beta
[
k
]
=
ls_fit
(
curr_x
,
curr_y
)
return
res_beta
return
res_beta
@
nb
.
njit
(
nogil
=
True
,
cache
=
True
)
def
_train_sub_group
(
x
,
y
,
k
,
curr_idx
,
res
):
curr_x
=
x
[
curr_idx
]
curr_y
=
y
[
curr_idx
]
res
[
k
]
=
ls_fit
(
curr_x
,
curr_y
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
import
datetime
as
dt
x
=
np
.
random
.
randn
(
3000
,
10
)
x
=
np
.
random
.
randn
(
3000
,
10
)
y
=
np
.
random
.
randn
(
3000
)
y
=
np
.
random
.
randn
(
3000
)
groups
=
np
.
random
.
randint
(
30
,
size
=
3000
)
groups
=
np
.
random
.
randint
(
30
,
size
=
3000
)
...
@@ -65,5 +73,12 @@ if __name__ == '__main__':
...
@@ -65,5 +73,12 @@ if __name__ == '__main__':
model
=
LinearModel
()
model
=
LinearModel
()
model
.
calibrate
(
x
,
y
,
groups
)
start
=
dt
.
datetime
.
now
()
model
.
predict
(
to_x
,
to_groups
)
for
i
in
range
(
5000
):
\ No newline at end of file
model
.
calibrate
(
x
,
y
,
groups
)
print
(
dt
.
datetime
.
now
()
-
start
)
start
=
dt
.
datetime
.
now
()
for
i
in
range
(
50000
):
model
.
predict
(
to_x
,
to_groups
)
print
(
dt
.
datetime
.
now
()
-
start
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment