Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
c14a3881
Commit
c14a3881
authored
Nov 14, 2020
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
FIX: wrong dx return calculation
parent
64259fc1
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
158 additions
and
18 deletions
+158
-18
__init__.py
alphamind/data/dbmodel/models/__init__.py
+6
-0
models_rl.py
alphamind/data/dbmodel/models/models_rl.py
+81
-0
sqlengine_rl.py
alphamind/data/engines/sqlengine/sqlengine_rl.py
+65
-14
utilities.py
alphamind/data/engines/utilities.py
+1
-1
test_suite.py
alphamind/tests/test_suite.py
+5
-3
No files found.
alphamind/data/dbmodel/models/__init__.py
View file @
c14a3881
...
@@ -20,6 +20,10 @@ if "DB_VENDOR" in os.environ and os.environ["DB_VENDOR"].lower() == "rl":
...
@@ -20,6 +20,10 @@ if "DB_VENDOR" in os.environ and os.environ["DB_VENDOR"].lower() == "rl":
from
alphamind.data.dbmodel.models.models_rl
import
SpecificRiskLong
from
alphamind.data.dbmodel.models.models_rl
import
SpecificRiskLong
from
alphamind.data.dbmodel.models.models_rl
import
IndexComponent
from
alphamind.data.dbmodel.models.models_rl
import
IndexComponent
from
alphamind.data.dbmodel.models.models_rl
import
IndexWeight
from
alphamind.data.dbmodel.models.models_rl
import
IndexWeight
from
alphamind.data.dbmodel.models.models_rl
import
FactorMomentum
factor_tables
=
[
Market
,
RiskExposure
,
FactorMomentum
]
else
:
else
:
from
alphamind.data.dbmodel.models.models
import
Market
from
alphamind.data.dbmodel.models.models
import
Market
from
alphamind.data.dbmodel.models.models
import
IndexMarket
from
alphamind.data.dbmodel.models.models
import
IndexMarket
...
@@ -35,3 +39,5 @@ else:
...
@@ -35,3 +39,5 @@ else:
from
alphamind.data.dbmodel.models.models
import
FactorMaster
from
alphamind.data.dbmodel.models.models
import
FactorMaster
from
alphamind.data.dbmodel.models.models
import
IndexComponent
from
alphamind.data.dbmodel.models.models
import
IndexComponent
from
alphamind.data.dbmodel.models.models
import
RiskMaster
from
alphamind.data.dbmodel.models.models
import
RiskMaster
factor_tables
=
[
Market
,
RiskExposure
]
alphamind/data/dbmodel/models/models_rl.py
View file @
c14a3881
...
@@ -401,6 +401,85 @@ class _SpecificRiskShort(Base):
...
@@ -401,6 +401,85 @@ class _SpecificRiskShort(Base):
SRISK
=
Column
(
FLOAT
)
SRISK
=
Column
(
FLOAT
)
# Factor tables
class
_FactorMomentum
(
Base
):
__tablename__
=
'factor_momentum'
__table_args__
=
(
Index
(
'factor_momentum_uindex'
,
'trade_date'
,
'security_code'
,
'flag'
,
unique
=
True
),
)
id
=
Column
(
INT
,
primary_key
=
True
)
code
=
Column
(
"security_code"
,
Text
,
nullable
=
False
)
trade_date
=
Column
(
Date
,
nullable
=
False
)
ADX14D
=
Column
(
FLOAT
)
ADXR14D
=
Column
(
FLOAT
)
APBMA5D
=
Column
(
FLOAT
)
ARC50D
=
Column
(
FLOAT
)
BBI
=
Column
(
FLOAT
)
BIAS10D
=
Column
(
FLOAT
)
BIAS20D
=
Column
(
FLOAT
)
BIAS5D
=
Column
(
FLOAT
)
BIAS60D
=
Column
(
FLOAT
)
CCI10D
=
Column
(
FLOAT
)
CCI20D
=
Column
(
FLOAT
)
CCI5D
=
Column
(
FLOAT
)
CCI88D
=
Column
(
FLOAT
)
ChgTo1MAvg
=
Column
(
FLOAT
)
ChgTo1YAvg
=
Column
(
FLOAT
)
ChgTo3MAvg
=
Column
(
FLOAT
)
ChkOsci3D10D
=
Column
(
FLOAT
)
ChkVol10D
=
Column
(
FLOAT
)
DEA
=
Column
(
FLOAT
)
EMA10D
=
Column
(
FLOAT
)
EMA120D
=
Column
(
FLOAT
)
EMA12D
=
Column
(
FLOAT
)
EMA20D
=
Column
(
FLOAT
)
EMA26D
=
Column
(
FLOAT
)
EMA5D
=
Column
(
FLOAT
)
EMA60D
=
Column
(
FLOAT
)
EMV14D
=
Column
(
FLOAT
)
EMV6D
=
Column
(
FLOAT
)
Fiftytwoweekhigh
=
Column
(
FLOAT
)
HT_TRENDLINE
=
Column
(
FLOAT
)
KAMA10D
=
Column
(
FLOAT
)
MA10Close
=
Column
(
FLOAT
)
MA10D
=
Column
(
FLOAT
)
MA10RegressCoeff12
=
Column
(
FLOAT
)
MA10RegressCoeff6
=
Column
(
FLOAT
)
MA120D
=
Column
(
FLOAT
)
MA20D
=
Column
(
FLOAT
)
MA5D
=
Column
(
FLOAT
)
MA60D
=
Column
(
FLOAT
)
MACD12D26D
=
Column
(
FLOAT
)
MIDPOINT10D
=
Column
(
FLOAT
)
MIDPRICE10D
=
Column
(
FLOAT
)
MTM10D
=
Column
(
FLOAT
)
PLRC12D
=
Column
(
FLOAT
)
PLRC6D
=
Column
(
FLOAT
)
PM10D
=
Column
(
FLOAT
)
PM120D
=
Column
(
FLOAT
)
PM20D
=
Column
(
FLOAT
)
PM250D
=
Column
(
FLOAT
)
PM5D
=
Column
(
FLOAT
)
PM60D
=
Column
(
FLOAT
)
PMDif5D20D
=
Column
(
FLOAT
)
PMDif5D60D
=
Column
(
FLOAT
)
RCI12D
=
Column
(
FLOAT
)
RCI24D
=
Column
(
FLOAT
)
SAR
=
Column
(
FLOAT
)
SAREXT
=
Column
(
FLOAT
)
SMA15D
=
Column
(
FLOAT
)
TEMA10D
=
Column
(
FLOAT
)
TEMA5D
=
Column
(
FLOAT
)
TRIMA10D
=
Column
(
FLOAT
)
TRIX10D
=
Column
(
FLOAT
)
TRIX5D
=
Column
(
FLOAT
)
UOS7D14D28D
=
Column
(
FLOAT
)
WMA10D
=
Column
(
FLOAT
)
flag
=
Column
(
INT
,
server_default
=
text
(
"'1'"
))
Market
=
_StkDailyPricePro
Market
=
_StkDailyPricePro
IndexMarket
=
_IndexDailyPrice
IndexMarket
=
_IndexDailyPrice
Universe
=
_StkUniverse
Universe
=
_StkUniverse
...
@@ -414,3 +493,5 @@ SpecificRiskShort = _SpecificRiskShort
...
@@ -414,3 +493,5 @@ SpecificRiskShort = _SpecificRiskShort
SpecificRiskLong
=
_SpecificRiskLong
SpecificRiskLong
=
_SpecificRiskLong
IndexComponent
=
_IndexComponent
IndexComponent
=
_IndexComponent
IndexWeight
=
_Index
IndexWeight
=
_Index
FactorMomentum
=
_FactorMomentum
alphamind/data/engines/sqlengine/sqlengine_rl.py
View file @
c14a3881
...
@@ -31,7 +31,7 @@ from alphamind.data.dbmodel.models.models_rl import (
...
@@ -31,7 +31,7 @@ from alphamind.data.dbmodel.models.models_rl import (
RiskExposure
,
RiskExposure
,
Universe
as
UniverseTable
,
Universe
as
UniverseTable
,
IndexComponent
,
IndexComponent
,
IndexWeight
IndexWeight
,
)
)
from
alphamind.data.engines.utilities
import
factor_tables
from
alphamind.data.engines.utilities
import
factor_tables
from
alphamind.data.engines.utilities
import
_map_factors
from
alphamind.data.engines.utilities
import
_map_factors
...
@@ -229,10 +229,12 @@ class SqlEngine:
...
@@ -229,10 +229,12 @@ class SqlEngine:
)
)
)
)
df1
=
pd
.
read_sql
(
t1
,
self
.
session
.
bind
)
.
dropna
()
df1
=
pd
.
read_sql
(
t1
,
self
.
session
.
bind
)
.
dropna
()
df
2
=
self
.
fetch_codes_range
(
universe
,
start_date
,
end_date
,
dates
)
df
1
=
self
.
_create_stats
(
df1
,
horizon
,
offset
)
df2
=
self
.
fetch_codes_range
(
universe
,
start_date
,
end_date
,
dates
)
df2
[
"trade_date"
]
=
pd
.
to_datetime
(
df2
[
"trade_date"
])
df
=
pd
.
merge
(
df1
,
df2
,
on
=
[
"trade_date"
,
"code"
])
df
=
pd
.
merge
(
df1
,
df2
,
on
=
[
"trade_date"
,
"code"
])
df
=
self
.
_create_stats
(
df
,
horizon
,
offset
)
if
dates
:
if
dates
:
df
=
df
[
df
.
trade_date
.
isin
(
dates
)]
df
=
df
[
df
.
trade_date
.
isin
(
dates
)]
...
@@ -711,6 +713,43 @@ class SqlEngine:
...
@@ -711,6 +713,43 @@ class SqlEngine:
)
.
distinct
()
)
.
distinct
()
return
pd
.
read_sql
(
query
,
self
.
engine
)
return
pd
.
read_sql
(
query
,
self
.
engine
)
def
fetch_data
(
self
,
ref_date
:
str
,
factors
:
Iterable
[
str
],
codes
:
Iterable
[
int
],
benchmark
:
int
=
None
,
risk_model
:
str
=
'short'
,
industry
:
str
=
'sw'
)
->
Dict
[
str
,
pd
.
DataFrame
]:
total_data
=
dict
()
transformer
=
Transformer
(
factors
)
factor_data
=
self
.
fetch_factor
(
ref_date
,
transformer
,
codes
,
used_factor_tables
=
factor_tables
)
if
benchmark
:
benchmark_data
=
self
.
fetch_benchmark
(
ref_date
,
benchmark
)
total_data
[
'benchmark'
]
=
benchmark_data
factor_data
=
pd
.
merge
(
factor_data
,
benchmark_data
,
how
=
'left'
,
on
=
[
'code'
])
factor_data
[
'weight'
]
=
factor_data
[
'weight'
]
.
fillna
(
0.
)
if
risk_model
:
excluded
=
list
(
set
(
total_risk_factors
)
.
intersection
(
transformer
.
dependency
))
risk_cov
,
risk_exp
=
self
.
fetch_risk_model
(
ref_date
,
codes
,
risk_model
,
excluded
)
factor_data
=
pd
.
merge
(
factor_data
,
risk_exp
,
how
=
'left'
,
on
=
[
'code'
])
total_data
[
'risk_cov'
]
=
risk_cov
industry_info
=
self
.
fetch_industry
(
ref_date
=
ref_date
,
codes
=
codes
,
category
=
industry
)
factor_data
=
pd
.
merge
(
factor_data
,
industry_info
,
on
=
[
'code'
])
total_data
[
'factor'
]
=
factor_data
return
total_data
def
fetch_data_range
(
self
,
def
fetch_data_range
(
self
,
universe
:
Universe
,
universe
:
Universe
,
factors
:
Iterable
[
str
],
factors
:
Iterable
[
str
],
...
@@ -721,7 +760,8 @@ class SqlEngine:
...
@@ -721,7 +760,8 @@ class SqlEngine:
risk_model
:
str
=
'short'
,
risk_model
:
str
=
'short'
,
industry
:
str
=
'sw'
,
industry
:
str
=
'sw'
,
external_data
:
pd
.
DataFrame
=
None
)
->
Dict
[
str
,
pd
.
DataFrame
]:
external_data
:
pd
.
DataFrame
=
None
)
->
Dict
[
str
,
pd
.
DataFrame
]:
total_data
=
dict
()
total_data
=
{}
transformer
=
Transformer
(
factors
)
transformer
=
Transformer
(
factors
)
factor_data
=
self
.
fetch_factor_range
(
universe
,
factor_data
=
self
.
fetch_factor_range
(
universe
,
transformer
,
transformer
,
...
@@ -757,22 +797,25 @@ class SqlEngine:
...
@@ -757,22 +797,25 @@ class SqlEngine:
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
from
PyFin.api
import
makeSchedule
db_url
=
"mysql+mysqldb://reader:Reader#2020@121.37.138.1:13317/vision?charset=utf8"
db_url
=
"mysql+mysqldb://reader:Reader#2020@121.37.138.1:13317/vision?charset=utf8"
sql_engine
=
SqlEngine
(
db_url
=
db_url
)
sql_engine
=
SqlEngine
(
db_url
=
db_url
)
universe
=
Universe
(
"hs300"
)
universe
=
Universe
(
"hs300"
)
start_date
=
'2020-01-01'
start_date
=
'2020-01-01'
end_date
=
'2020-0
2
-21'
end_date
=
'2020-0
4
-21'
benchmark
=
300
benchmark
=
300
df
=
sql_engine
.
fetch_factor
(
"2020-02-21"
,
factors
=
[
"BETA"
],
codes
=
[
"2010031963"
])
factors
=
[
"EMA5D"
,
"EMV6D"
]
print
(
df
)
ref_dates
=
makeSchedule
(
start_date
,
end_date
,
"10b"
,
'china.sse'
)
df
=
sql_engine
.
fetch_factor_range
(
universe
=
universe
,
start_date
=
start_date
,
end_date
=
end_date
,
factors
=
[
"BETA"
])
# df = sql_engine.fetch_factor("2020-02-21", factors=factors, codes=["2010031963"])
print
(
df
)
# print(df)
df
=
sql_engine
.
fetch_codes_range
(
start_date
=
start_date
,
end_date
=
end_date
,
universe
=
Universe
(
"hs300"
))
# df = sql_engine.fetch_factor_range(universe=universe, start_date=start_date, end_date=end_date, factors=factors)
print
(
df
)
# print(df)
df
=
sql_engine
.
fetch_dx_return
(
"2020-10-09"
,
codes
=
[
"2010031963"
])
# df = sql_engine.fetch_codes_range(start_date=start_date, end_date=end_date, universe=Universe("hs300"))
print
(
df
)
# print(df)
df
=
sql_engine
.
fetch_dx_return_range
(
universe
,
start_date
=
start_date
,
end_date
=
end_date
)
# df = sql_engine.fetch_dx_return("2020-10-09", codes=["2010031963"])
# print(df)
df
=
sql_engine
.
fetch_dx_return_range
(
universe
,
dates
=
ref_dates
,
horizon
=
9
)
print
(
df
)
print
(
df
)
df
=
sql_engine
.
fetch_dx_return_index
(
"2020-10-09"
,
index_code
=
benchmark
)
df
=
sql_engine
.
fetch_dx_return_index
(
"2020-10-09"
,
index_code
=
benchmark
)
print
(
df
)
print
(
df
)
...
@@ -805,4 +848,12 @@ if __name__ == "__main__":
...
@@ -805,4 +848,12 @@ if __name__ == "__main__":
end_date
=
end_date
,
end_date
=
end_date
,
model_type
=
"factor"
)
model_type
=
"factor"
)
print
(
df
)
print
(
df
)
df
=
sql_engine
.
fetch_data
(
"2020-02-11"
,
factors
=
factors
,
codes
=
[
"2010031963"
],
benchmark
=
300
)
print
(
df
)
df
=
sql_engine
.
fetch_data_range
(
universe
,
factors
=
factors
,
start_date
=
start_date
,
end_date
=
end_date
,
benchmark
=
300
)
print
(
df
)
alphamind/data/engines/utilities.py
View file @
c14a3881
...
@@ -17,8 +17,8 @@ from alphamind.data.dbmodel.models import RiskExposure
...
@@ -17,8 +17,8 @@ from alphamind.data.dbmodel.models import RiskExposure
from
alphamind.data.dbmodel.models
import
SpecificRiskDay
from
alphamind.data.dbmodel.models
import
SpecificRiskDay
from
alphamind.data.dbmodel.models
import
SpecificRiskLong
from
alphamind.data.dbmodel.models
import
SpecificRiskLong
from
alphamind.data.dbmodel.models
import
SpecificRiskShort
from
alphamind.data.dbmodel.models
import
SpecificRiskShort
from
alphamind.data.dbmodel.models
import
factor_tables
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
factor_tables
=
[
Market
,
RiskExposure
]
def
_map_risk_model_table
(
risk_model
:
str
)
->
tuple
:
def
_map_risk_model_table
(
risk_model
:
str
)
->
tuple
:
...
...
alphamind/tests/test_suite.py
View file @
c14a3881
...
@@ -10,9 +10,11 @@ import os
...
@@ -10,9 +10,11 @@ import os
SKIP_ENGINE_TESTS
=
True
SKIP_ENGINE_TESTS
=
True
if
not
SKIP_ENGINE_TESTS
:
if
not
SKIP_ENGINE_TESTS
:
try
:
DATA_ENGINE_URI
=
os
.
environ
[
'DB_URI'
]
DATA_ENGINE_URI
=
os
.
environ
[
'DB_URI'
]
else
:
except
KeyError
:
DATA_ENGINE_URI
=
None
DATA_ENGINE_URI
=
"mysql+mysqldb://reader:Reader#2020@121.37.138.1:13317/vision?charset=utf8"
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
from
simpleutils
import
add_parent_path
from
simpleutils
import
add_parent_path
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment