Commit c9860107 authored by Dr.李's avatar Dr.李

fixed some typo

parent 69471996
......@@ -9,6 +9,7 @@ import copy
import numpy as np
import pandas as pd
from PyFin.api import makeSchedule
from PyFin.api import advanceDateByCalendar
from alphamind.utilities import map_freq
from alphamind.utilities import alpha_logger
from alphamind.model.composer import train_model
......@@ -44,6 +45,7 @@ class RunningSetting(object):
self.dates = [d.strftime('%Y-%m-%d') for d in self.dates]
self.benchmark = benchmark
self.weights_bandwidth = weights_bandwidth
self.freq = freq
self.horizon = map_freq(freq)
self.executor = NaiveExecutor()
self.industry_cat = industry_cat
......@@ -72,7 +74,7 @@ class Strategy(object):
dates=self.running_setting.dates)
alpha_logger.info("alpha factor data loading finished ...")
total_industry = self.engine.fetch_industry_matrix_range(universe,
total_industry = self.engine.fetch_industry_matrix_range(self.running_setting.universe,
dates=self.running_setting.dates,
category=self.running_setting.industry_cat,
level=self.running_setting.industry_level)
......@@ -83,7 +85,7 @@ class Strategy(object):
alpha_logger.info("benchmark data loading finished ...")
total_risk_cov, total_risk_exposure = self.engine.fetch_risk_model_range(
universe,
self.running_setting.universe,
dates=self.running_setting.dates,
risk_model=self.data_meta.risk_model
)
......@@ -187,7 +189,7 @@ class Strategy(object):
horizon=self.running_setting.horizon,
offset=1).set_index('trade_date')
ret_df['benchmark_returns'] = index_return['dx']
ret_df.loc[advanceDateByCalendar('china.sse', ret_df.index[-1], freq)] = 0.
ret_df.loc[advanceDateByCalendar('china.sse', ret_df.index[-1], self.running_setting.freq)] = 0.
ret_df = ret_df.shift(1)
ret_df.iloc[0] = 0.
ret_df['excess_return'] = ret_df['returns'] - ret_df['benchmark_returns'] * ret_df['leverage']
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment