Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
c9c2c89c
Commit
c9c2c89c
authored
May 25, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added general build portfolio interface
parent
1d36527e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
1 deletion
+25
-1
factoranalysis.py
alphamind/analysis/factoranalysis.py
+25
-1
No files found.
alphamind/analysis/factoranalysis.py
View file @
c9c2c89c
...
@@ -9,11 +9,15 @@ import numpy as np
...
@@ -9,11 +9,15 @@ import numpy as np
from
typing
import
Optional
from
typing
import
Optional
from
typing
import
List
from
typing
import
List
from
alphamind.data.neutralize
import
neutralize
from
alphamind.data.neutralize
import
neutralize
from
alphamind.portfolio.longshortbulder
import
long_short_build
from
alphamind.portfolio.rankbuilder
import
rank_build
from
alphamind.portfolio.percentbuilder
import
percent_build
from
alphamind.portfolio.linearbuilder
import
linear_build
def
factor_processing
(
raw_factor
:
np
.
ndarray
,
def
factor_processing
(
raw_factor
:
np
.
ndarray
,
pre_process
:
Optional
[
List
]
=
None
,
pre_process
:
Optional
[
List
]
=
None
,
risk_factors
:
Optional
[
np
.
ndarray
]
=
None
):
risk_factors
:
Optional
[
np
.
ndarray
]
=
None
)
->
np
.
ndarray
:
new_factor
=
raw_factor
new_factor
=
raw_factor
...
@@ -27,6 +31,26 @@ def factor_processing(raw_factor: np.ndarray,
...
@@ -27,6 +31,26 @@ def factor_processing(raw_factor: np.ndarray,
return
new_factor
return
new_factor
def
build_portfolio
(
er
:
np
.
ndarray
,
builder
:
Optional
[
str
]
=
'long_short'
,
**
kwargs
)
->
np
.
ndarray
:
builder
=
builder
.
lower
()
if
builder
==
'long_short'
:
return
long_short_build
(
er
,
**
kwargs
)
elif
builder
==
'rank'
:
return
rank_build
(
er
,
**
kwargs
)
elif
builder
==
'percent_build'
:
return
percent_build
(
er
,
**
kwargs
)
elif
builder
==
'linear_prog'
:
status
,
_
,
weight
=
linear_build
(
er
,
**
kwargs
)
if
status
!=
'optimal'
:
raise
ValueError
(
'linear programming optimizer in status: {0}'
.
format
(
status
))
else
:
return
weight
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
from
alphamind.data.standardize
import
standardize
from
alphamind.data.standardize
import
standardize
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment