Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
cee2b19a
Commit
cee2b19a
authored
Apr 26, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
small enhancement
parent
b3713d44
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
41 additions
and
30 deletions
+41
-30
impl.pyx
alphamind/data/impl.pyx
+41
-29
standardize.py
alphamind/data/standardize.py
+0
-1
No files found.
alphamind/data/impl.pyx
View file @
cee2b19a
...
@@ -5,8 +5,9 @@ Created on 2017-4-26
...
@@ -5,8 +5,9 @@ Created on 2017-4-26
@author: cheng.li
@author: cheng.li
"""
"""
import numpy as np
cimport numpy as np
cimport numpy as np
from numpy import zeros
from numpy import asarray
cimport cython
cimport cython
from libc.math cimport sqrt
from libc.math cimport sqrt
...
@@ -14,7 +15,7 @@ from libc.math cimport sqrt
...
@@ -14,7 +15,7 @@ from libc.math cimport sqrt
@cython.boundscheck(False)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.wraparound(False)
@cython.initializedcheck(False)
@cython.initializedcheck(False)
cdef int max_groups(long
[:]
groups, size_t length) nogil:
cdef int max_groups(long
*
groups, size_t length) nogil:
cdef long curr_max = 0
cdef long curr_max = 0
cdef size_t i
cdef size_t i
cdef long curr
cdef long curr
...
@@ -29,10 +30,12 @@ cdef int max_groups(long[:] groups, size_t length) nogil:
...
@@ -29,10 +30,12 @@ cdef int max_groups(long[:] groups, size_t length) nogil:
@cython.wraparound(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.cdivision(True)
@cython.initializedcheck(False)
@cython.initializedcheck(False)
cdef double[:, :] agg_mean(long
[:] groups, double[:, :]
x, size_t length, size_t width):
cdef double[:, :] agg_mean(long
* groups, double*
x, size_t length, size_t width):
cdef long max_g = max_groups(groups, length)
cdef long max_g = max_groups(groups, length)
cdef double[:, :] res = np.zeros((max_g+1, width))
cdef double[:, :] res = zeros((max_g+1, width))
cdef long[:] bin_count = np.zeros(max_g+1, dtype=int)
cdef double* res_ptr = &res[0, 0]
cdef long[:] bin_count = zeros(max_g+1, dtype=int)
cdef long* bin_count_ptr = &bin_count[0]
cdef size_t i
cdef size_t i
cdef size_t j
cdef size_t j
cdef long curr
cdef long curr
...
@@ -40,14 +43,14 @@ cdef double[:, :] agg_mean(long[:] groups, double[:, :] x, size_t length, size_t
...
@@ -40,14 +43,14 @@ cdef double[:, :] agg_mean(long[:] groups, double[:, :] x, size_t length, size_t
with nogil:
with nogil:
for i in range(length):
for i in range(length):
for j in range(width):
for j in range(width):
res
[groups[i], j] += x[i,
j]
res
_ptr[groups[i]*width + j] += x[i*width +
j]
bin_count[groups[i]] += 1
bin_count
_ptr
[groups[i]] += 1
for i in range(
res.shape[0]
):
for i in range(
max_g+1
):
curr = bin_count[i]
curr = bin_count
_ptr
[i]
if curr != 0:
if curr != 0:
for j in range(width):
for j in range(width):
res
[i,
j] /= curr
res
_ptr[i*width +
j] /= curr
return res
return res
...
@@ -55,14 +58,18 @@ cdef double[:, :] agg_mean(long[:] groups, double[:, :] x, size_t length, size_t
...
@@ -55,14 +58,18 @@ cdef double[:, :] agg_mean(long[:] groups, double[:, :] x, size_t length, size_t
@cython.wraparound(False)
@cython.wraparound(False)
@cython.cdivision(True)
@cython.cdivision(True)
@cython.initializedcheck(False)
@cython.initializedcheck(False)
cdef double[:, :] agg_std(long
[:] groups, double[:, :]
x, size_t length, size_t width, long ddof=1):
cdef double[:, :] agg_std(long
* groups, double*
x, size_t length, size_t width, long ddof=1):
cdef long max_g = max_groups(groups, length)
cdef long max_g = max_groups(groups, length)
cdef double[:, :] running_sum_square = np.zeros((max_g+1, width))
cdef double[:, :] running_sum_square = zeros((max_g+1, width))
cdef double[:, :] running_sum = np.zeros((max_g+1, width))
cdef double* running_sum_square_ptr = &running_sum_square[0, 0]
cdef long[:] bin_count = np.zeros(max_g+1, dtype=int)
cdef double[:, :] running_sum = zeros((max_g+1, width))
cdef double* running_sum_ptr = &running_sum[0, 0]
cdef long[:] bin_count = zeros(max_g+1, dtype=int)
cdef long* bin_count_ptr = &bin_count[0]
cdef size_t i
cdef size_t i
cdef size_t j
cdef size_t j
cdef long k
cdef long k
cdef size_t indice
cdef long curr
cdef long curr
cdef double raw_value
cdef double raw_value
...
@@ -70,16 +77,17 @@ cdef double[:, :] agg_std(long[:] groups, double[:, :] x, size_t length, size_t
...
@@ -70,16 +77,17 @@ cdef double[:, :] agg_std(long[:] groups, double[:, :] x, size_t length, size_t
for i in range(length):
for i in range(length):
k = groups[i]
k = groups[i]
for j in range(width):
for j in range(width):
raw_value = x[i
,
j]
raw_value = x[i
*width +
j]
running_sum
[k,
j] += raw_value
running_sum
_ptr[k*width +
j] += raw_value
running_sum_square
[k,
j] += raw_value * raw_value
running_sum_square
_ptr[k*width +
j] += raw_value * raw_value
bin_count[k] += 1
bin_count
_ptr
[k] += 1
for i in range(
running_sum_square.shape[0]
):
for i in range(
max_g+1
):
curr = bin_count[i]
curr = bin_count
_ptr
[i]
if curr
> ddof
:
if curr
!= 0
:
for j in range(width):
for j in range(width):
running_sum_square[i, j] = sqrt((running_sum_square[i, j] - running_sum[i, j] * running_sum[i, j] / curr) / (curr - ddof))
indice = i * width + j
running_sum_square_ptr[indice] = sqrt((running_sum_square_ptr[indice] - running_sum_ptr[indice] * running_sum_ptr[indice] / curr) / (curr - ddof))
return running_sum_square
return running_sum_square
...
@@ -90,21 +98,25 @@ cpdef np.ndarray[double, ndim=2] transform(long[:] groups, double[:, :] x, str f
...
@@ -90,21 +98,25 @@ cpdef np.ndarray[double, ndim=2] transform(long[:] groups, double[:, :] x, str f
cdef size_t length = x.shape[0]
cdef size_t length = x.shape[0]
cdef size_t width = x.shape[1]
cdef size_t width = x.shape[1]
cdef double[:, :] res_data = np.zeros((length, width))
cdef double[:, :] res_data = zeros((length, width))
cdef double[:, :] value_data = np.zeros((length, width))
cdef double* res_data_ptr = &res_data[0, 0]
cdef double[:, :] value_data = zeros((length, width))
cdef double* value_data_ptr
cdef size_t i
cdef size_t i
cdef size_t j
cdef size_t j
cdef size_t k
cdef size_t k
if func == 'mean':
if func == 'mean':
value_data = agg_mean(
groups, x
, length, width)
value_data = agg_mean(
&groups[0], &x[0, 0]
, length, width)
elif func == 'std':
elif func == 'std':
value_data = agg_std(groups, x, length, width, ddof=1)
value_data = agg_std(&groups[0], &x[0, 0], length, width, ddof=1)
value_data_ptr = &value_data[0, 0]
with nogil:
with nogil:
for i in range(length):
for i in range(length):
k = groups[i]
k = groups[i]
for j in range(width):
for j in range(width):
res_data
[i, j] = value_data[k,
j]
res_data
_ptr[i*width + j] = value_data_ptr[k*width +
j]
return np.asarray(res_data)
return asarray(res_data)
\ No newline at end of file
\ No newline at end of file
alphamind/data/standardize.py
View file @
cee2b19a
...
@@ -18,4 +18,3 @@ def standardize(x: np.ndarray, groups: np.ndarray=None) -> np.ndarray:
...
@@ -18,4 +18,3 @@ def standardize(x: np.ndarray, groups: np.ndarray=None) -> np.ndarray:
return
(
x
-
mean_values
)
/
std_values
return
(
x
-
mean_values
)
/
std_values
else
:
else
:
return
(
x
-
x
.
mean
(
axis
=
0
))
/
x
.
std
(
axis
=
0
)
return
(
x
-
x
.
mean
(
axis
=
0
))
/
x
.
std
(
axis
=
0
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment