Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
d3bf7111
Commit
d3bf7111
authored
Mar 05, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
using long short
parent
771804b0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
18 deletions
+6
-18
crosssetctions.py
alphamind/analysis/crosssetctions.py
+6
-18
No files found.
alphamind/analysis/crosssetctions.py
View file @
d3bf7111
...
...
@@ -8,9 +8,8 @@ Created on 2018-3-5
import
numpy
as
np
import
pandas
as
pd
import
statsmodels.api
as
sm
from
alphamind.portfolio.constraints
import
LinearConstraints
from
alphamind.analysis.factoranalysis
import
er_portfolio_analysis
from
alphamind.utilities
import
alpha_logger
from
alphamind.data.neutralize
import
neutralize
def
cross_section_analysis
(
ref_date
,
...
...
@@ -18,9 +17,6 @@ def cross_section_analysis(ref_date,
universe
,
horizon
,
constraint_risk
,
linear_bounds
,
lbound
,
ubound
,
engine
):
codes
=
engine
.
fetch_codes
(
ref_date
,
universe
)
...
...
@@ -33,23 +29,14 @@ def cross_section_analysis(ref_date,
total_data
=
pd
.
merge
(
total_data
,
industry_matrix
,
on
=
'code'
)
.
dropna
()
total_risk_exp
=
total_data
[
constraint_risk
]
constraints
=
LinearConstraints
(
linear_bounds
,
total_risk_exp
)
er
=
total_data
[
factor_name
]
.
values
.
astype
(
float
)
er
=
neutralize
(
total_risk_exp
.
values
,
er
)
.
flatten
()
industry
=
total_data
.
industry_name
.
values
target_pos
,
_
=
er_portfolio_analysis
(
er
,
industry
,
None
,
constraints
,
False
,
None
,
method
=
'risk_neutral'
,
lbound
=
lbound
*
np
.
ones
(
len
(
er
)),
ubound
=
ubound
*
np
.
ones
(
len
(
er
)))
codes
=
total_data
.
code
.
tolist
()
target_pos
[
'code'
]
=
codes
target_pos
=
pd
.
DataFrame
({
'code'
:
codes
,
'weight'
:
er
,
'industry'
:
industry
})
target_pos
[
'weight'
]
=
target_pos
[
'weight'
]
/
target_pos
[
'weight'
]
.
abs
()
.
sum
()
dx_returns
=
engine
.
fetch_dx_return
(
ref_date
,
codes
,
horizon
=
horizon
,
offset
=
1
)
...
...
@@ -63,4 +50,5 @@ def cross_section_analysis(ref_date,
t_stats
=
results
.
tvalues
[
1
]
alpha_logger
.
info
(
f
"{ref_date} is finished with {len(target_pos)} stocks for {factor_name}"
)
alpha_logger
.
info
(
f
"{ref_date} risk_exposure {target_pos.weight.values @ total_risk_exp.values}"
)
return
port_ret
,
ic
,
t_stats
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment