Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
e2228533
Commit
e2228533
authored
Nov 14, 2020
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
FEATURE: update risk model fetching
parent
f3dd843e
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
105 additions
and
16 deletions
+105
-16
models_rl.py
alphamind/data/dbmodel/models_rl.py
+1
-0
sqlengine_rl.py
alphamind/data/engines/sqlengine_rl.py
+90
-2
utilities.py
alphamind/data/engines/utilities.py
+14
-14
No files found.
alphamind/data/dbmodel/models_rl.py
View file @
e2228533
...
@@ -156,6 +156,7 @@ class _RiskExposure(Base):
...
@@ -156,6 +156,7 @@ class _RiskExposure(Base):
AERODEF
=
Column
(
INT
)
AERODEF
=
Column
(
INT
)
Conglomerates
=
Column
(
INT
)
Conglomerates
=
Column
(
INT
)
COUNTRY
=
Column
(
INT
)
COUNTRY
=
Column
(
INT
)
flag
=
Column
(
INT
,
index
=
True
,
server_default
=
text
(
"'1'"
))
class
_RiskCovDay
(
Base
):
class
_RiskCovDay
(
Base
):
...
...
alphamind/data/engines/sqlengine_rl.py
View file @
e2228533
...
@@ -306,10 +306,11 @@ class SqlEngine:
...
@@ -306,10 +306,11 @@ class SqlEngine:
))
))
query
=
select
(
query
=
select
(
[
RiskExposure
.
code
,
special_risk_table
.
SRISK
.
label
(
'srisk'
)]
+
risk_exposure_cols
)
\
[
RiskExposure
.
code
.
label
(
"code"
)
,
special_risk_table
.
SRISK
.
label
(
'srisk'
)]
+
risk_exposure_cols
)
\
.
select_from
(
big_table
)
.
where
(
.
select_from
(
big_table
)
.
where
(
and_
(
RiskExposure
.
trade_date
==
ref_date
,
and_
(
RiskExposure
.
trade_date
==
ref_date
,
RiskExposure
.
code
.
in_
(
codes
)
RiskExposure
.
code
.
in_
(
codes
),
RiskExposure
.
flag
==
1
))
))
risk_exp
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
dropna
()
risk_exp
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
dropna
()
...
@@ -325,6 +326,77 @@ class SqlEngine:
...
@@ -325,6 +326,77 @@ class SqlEngine:
idsync
=
new_risk_exp
[
'srisk'
]
*
new_risk_exp
[
'srisk'
]
/
10000
idsync
=
new_risk_exp
[
'srisk'
]
*
new_risk_exp
[
'srisk'
]
/
10000
return
FactorRiskModel
(
factor_cov
,
factor_loading
,
idsync
),
risk_cov
,
risk_exp
return
FactorRiskModel
(
factor_cov
,
factor_loading
,
idsync
),
risk_cov
,
risk_exp
def
fetch_risk_model_range
(
self
,
universe
:
Universe
,
start_date
:
str
=
None
,
end_date
:
str
=
None
,
dates
:
Iterable
[
str
]
=
None
,
risk_model
:
str
=
'short'
,
excluded
:
Iterable
[
str
]
=
None
,
model_type
:
str
=
None
)
->
Tuple
[
pd
.
DataFrame
,
pd
.
DataFrame
]:
risk_cov_table
,
special_risk_table
=
_map_risk_model_table
(
risk_model
)
cov_risk_cols
=
[
risk_cov_table
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
]
cond
=
risk_cov_table
.
trade_date
.
in_
(
dates
)
if
dates
else
risk_cov_table
.
trade_date
.
between
(
start_date
,
end_date
)
query
=
select
([
risk_cov_table
.
trade_date
,
risk_cov_table
.
FactorID
,
risk_cov_table
.
Factor
]
+
cov_risk_cols
)
.
where
(
cond
)
risk_cov
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
([
'trade_date'
,
'FactorID'
])
if
not
excluded
:
excluded
=
[]
risk_exposure_cols
=
[
RiskExposure
.
__table__
.
columns
[
f
]
for
f
in
total_risk_factors
if
f
not
in
set
(
excluded
)]
cond
=
universe
.
_query_statements
(
start_date
,
end_date
,
dates
)
big_table
=
join
(
RiskExposure
,
UniverseTable
,
and_
(
RiskExposure
.
trade_date
==
UniverseTable
.
trade_date
,
RiskExposure
.
code
==
UniverseTable
.
code
,
RiskExposure
.
flag
==
1
,
cond
)
)
big_table
=
join
(
special_risk_table
,
big_table
,
and_
(
RiskExposure
.
code
==
special_risk_table
.
code
,
RiskExposure
.
trade_date
==
special_risk_table
.
trade_date
,
))
query
=
select
(
[
RiskExposure
.
trade_date
,
RiskExposure
.
code
.
label
(
"code"
),
special_risk_table
.
SRISK
.
label
(
'srisk'
)]
+
risk_exposure_cols
)
.
select_from
(
big_table
)
\
.
distinct
()
risk_exp
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
([
'trade_date'
,
'code'
])
.
dropna
()
if
not
model_type
:
return
risk_cov
,
risk_exp
elif
model_type
==
'factor'
:
new_risk_cov
=
risk_cov
.
set_index
(
'Factor'
)
new_risk_exp
=
risk_exp
.
set_index
(
'code'
)
risk_cov_groups
=
new_risk_cov
.
groupby
(
'trade_date'
)
risk_exp_groups
=
new_risk_exp
.
groupby
(
'trade_date'
)
models
=
dict
()
for
ref_date
,
cov_g
in
risk_cov_groups
:
exp_g
=
risk_exp_groups
.
get_group
(
ref_date
)
factor_names
=
cov_g
.
index
.
tolist
()
factor_cov
=
cov_g
.
loc
[
factor_names
,
factor_names
]
/
10000.
factor_loading
=
exp_g
.
loc
[:,
factor_names
]
idsync
=
exp_g
[
'srisk'
]
*
exp_g
[
'srisk'
]
/
10000
models
[
ref_date
]
=
FactorRiskModel
(
factor_cov
,
factor_loading
,
idsync
)
return
pd
.
Series
(
models
),
risk_cov
,
risk_exp
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
db_url
=
"mysql+mysqldb://reader:Reader#2020@121.37.138.1:13317/vision?charset=utf8"
db_url
=
"mysql+mysqldb://reader:Reader#2020@121.37.138.1:13317/vision?charset=utf8"
...
@@ -345,3 +417,19 @@ if __name__ == "__main__":
...
@@ -345,3 +417,19 @@ if __name__ == "__main__":
print
(
df
)
print
(
df
)
df
=
sql_engine
.
fetch_industry_range
(
start_date
=
start_date
,
end_date
=
end_date
,
universe
=
Universe
(
"hs300"
))
df
=
sql_engine
.
fetch_industry_range
(
start_date
=
start_date
,
end_date
=
end_date
,
universe
=
Universe
(
"hs300"
))
print
(
df
)
print
(
df
)
df
=
sql_engine
.
fetch_risk_model
(
"2020-02-21"
,
codes
=
[
"2010031963"
])
print
(
df
)
df
=
sql_engine
.
fetch_risk_model
(
"2020-02-21"
,
codes
=
[
"2010031963"
],
model_type
=
"factor"
)
print
(
df
)
start_date
=
'2020-01-01'
end_date
=
'2020-02-21'
df
=
sql_engine
.
fetch_risk_model_range
(
universe
=
universe
,
start_date
=
start_date
,
end_date
=
end_date
)
print
(
df
)
df
=
sql_engine
.
fetch_risk_model_range
(
universe
=
universe
,
start_date
=
start_date
,
end_date
=
end_date
,
model_type
=
"factor"
)
print
(
df
)
alphamind/data/engines/utilities.py
View file @
e2228533
...
@@ -10,20 +10,6 @@ from typing import Dict
...
@@ -10,20 +10,6 @@ from typing import Dict
from
typing
import
Iterable
from
typing
import
Iterable
if
"DB_VENDOR"
in
os
.
environ
and
os
.
environ
[
"DB_VENDOR"
]
.
lower
()
==
"rl"
:
if
"DB_VENDOR"
in
os
.
environ
and
os
.
environ
[
"DB_VENDOR"
]
.
lower
()
==
"rl"
:
from
alphamind.data.dbmodel.models
import
Categories
from
alphamind.data.dbmodel.models
import
Market
from
alphamind.data.dbmodel.models
import
RiskCovDay
from
alphamind.data.dbmodel.models
import
RiskCovLong
from
alphamind.data.dbmodel.models
import
RiskCovShort
from
alphamind.data.dbmodel.models
import
RiskExposure
from
alphamind.data.dbmodel.models
import
SpecificRiskDay
from
alphamind.data.dbmodel.models
import
SpecificRiskLong
from
alphamind.data.dbmodel.models
import
SpecificRiskShort
from
alphamind.data.dbmodel.models
import
Uqer
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
factor_tables
=
[
Market
,
RiskExposure
,
Uqer
,
Categories
]
else
:
from
alphamind.data.dbmodel.models
import
Categories
from
alphamind.data.dbmodel.models
import
Categories
from
alphamind.data.dbmodel.models
import
Market
from
alphamind.data.dbmodel.models
import
Market
from
alphamind.data.dbmodel.models_rl
import
RiskCovDay
from
alphamind.data.dbmodel.models_rl
import
RiskCovDay
...
@@ -37,6 +23,20 @@ else:
...
@@ -37,6 +23,20 @@ else:
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
factor_tables
=
[
Market
,
RiskExposure
,
Uqer
,
Categories
]
factor_tables
=
[
Market
,
RiskExposure
,
Uqer
,
Categories
]
else
:
from
alphamind.data.dbmodel.models
import
Categories
from
alphamind.data.dbmodel.models
import
Market
from
alphamind.data.dbmodel.models
import
RiskCovDay
from
alphamind.data.dbmodel.models
import
RiskCovLong
from
alphamind.data.dbmodel.models
import
RiskCovShort
from
alphamind.data.dbmodel.models
import
RiskExposure
from
alphamind.data.dbmodel.models
import
SpecificRiskDay
from
alphamind.data.dbmodel.models
import
SpecificRiskLong
from
alphamind.data.dbmodel.models
import
SpecificRiskShort
from
alphamind.data.dbmodel.models
import
Uqer
from
alphamind.data.engines.industries
import
INDUSTRY_MAPPING
factor_tables
=
[
Market
,
RiskExposure
,
Uqer
,
Categories
]
def
_map_risk_model_table
(
risk_model
:
str
)
->
tuple
:
def
_map_risk_model_table
(
risk_model
:
str
)
->
tuple
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment