Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
e2a164a6
Commit
e2a164a6
authored
Mar 24, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added data pre and post processing
parent
92c88995
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
2 deletions
+2
-2
crosssetctions.py
alphamind/analysis/crosssetctions.py
+2
-2
No files found.
alphamind/analysis/crosssetctions.py
View file @
e2a164a6
...
@@ -31,7 +31,7 @@ def cs_impl(ref_date,
...
@@ -31,7 +31,7 @@ def cs_impl(ref_date,
total_risk_exp
=
total_data
[
constraint_risk
]
total_risk_exp
=
total_data
[
constraint_risk
]
er
=
total_data
[
factor_name
]
.
values
.
astype
(
float
)
er
=
total_data
[
factor_name
]
.
values
.
astype
(
float
)
er
=
factor_processing
(
er
,
[
],
total_risk_exp
.
values
,
[
])
.
flatten
()
er
=
factor_processing
(
er
,
[
winsorize_normal
,
standardize
],
total_risk_exp
.
values
,
[
winsorize_normal
,
standardize
])
.
flatten
()
industry
=
total_data
.
industry_name
.
values
industry
=
total_data
.
industry_name
.
values
codes
=
total_data
.
code
.
tolist
()
codes
=
total_data
.
code
.
tolist
()
...
@@ -43,7 +43,7 @@ def cs_impl(ref_date,
...
@@ -43,7 +43,7 @@ def cs_impl(ref_date,
target_pos
=
pd
.
merge
(
target_pos
,
total_data
[[
'code'
]
+
constraint_risk
],
on
=
[
'code'
])
target_pos
=
pd
.
merge
(
target_pos
,
total_data
[[
'code'
]
+
constraint_risk
],
on
=
[
'code'
])
activate_weight
=
target_pos
.
weight
.
values
activate_weight
=
target_pos
.
weight
.
values
excess_return
=
np
.
exp
(
target_pos
.
dx
.
values
)
-
1.
excess_return
=
np
.
exp
(
target_pos
.
dx
.
values
)
-
1.
excess_return
=
factor_processing
(
excess_return
,
[
],
total_risk_exp
.
values
,
[
])
.
flatten
()
excess_return
=
factor_processing
(
excess_return
,
[
winsorize_normal
,
standardize
],
total_risk_exp
.
values
,
[
winsorize_normal
,
standardize
])
.
flatten
()
port_ret
=
np
.
log
(
activate_weight
@
excess_return
+
1.
)
port_ret
=
np
.
log
(
activate_weight
@
excess_return
+
1.
)
ic
=
np
.
corrcoef
(
excess_return
,
activate_weight
)[
0
,
1
]
ic
=
np
.
corrcoef
(
excess_return
,
activate_weight
)[
0
,
1
]
x
=
sm
.
add_constant
(
activate_weight
)
x
=
sm
.
add_constant
(
activate_weight
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment