Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
e4487d31
Commit
e4487d31
authored
Jan 08, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added xgb classifier
parent
38de1f0f
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
62 additions
and
3 deletions
+62
-3
api.py
alphamind/api.py
+2
-0
__init__.py
alphamind/model/__init__.py
+2
-0
loader.py
alphamind/model/loader.py
+3
-0
treemodel.py
alphamind/model/treemodel.py
+37
-1
test_treemodel.py
alphamind/tests/model/test_treemodel.py
+18
-2
No files found.
alphamind/api.py
View file @
e4487d31
...
@@ -31,6 +31,7 @@ from alphamind.model import ConstLinearModel
...
@@ -31,6 +31,7 @@ from alphamind.model import ConstLinearModel
from
alphamind.model
import
LogisticRegression
from
alphamind.model
import
LogisticRegression
from
alphamind.model
import
RandomForestRegressor
from
alphamind.model
import
RandomForestRegressor
from
alphamind.model
import
XGBRegressor
from
alphamind.model
import
XGBRegressor
from
alphamind.model
import
XGBClassifier
from
alphamind.model
import
load_model
from
alphamind.model
import
load_model
from
alphamind.model.data_preparing
import
fetch_data_package
from
alphamind.model.data_preparing
import
fetch_data_package
from
alphamind.model.data_preparing
import
fetch_train_phase
from
alphamind.model.data_preparing
import
fetch_train_phase
...
@@ -70,6 +71,7 @@ __all__ = [
...
@@ -70,6 +71,7 @@ __all__ = [
'LogisticRegression'
,
'LogisticRegression'
,
'RandomForestRegressor'
,
'RandomForestRegressor'
,
'XGBRegressor'
,
'XGBRegressor'
,
'XGBClassifier'
,
'load_model'
,
'load_model'
,
'NaiveExecutor'
,
'NaiveExecutor'
,
'ThresholdExecutor'
,
'ThresholdExecutor'
,
...
...
alphamind/model/__init__.py
View file @
e4487d31
...
@@ -12,6 +12,7 @@ from alphamind.model.linearmodel import LogisticRegression
...
@@ -12,6 +12,7 @@ from alphamind.model.linearmodel import LogisticRegression
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
from
alphamind.model.loader
import
load_model
from
alphamind.model.loader
import
load_model
...
@@ -22,4 +23,5 @@ __all__ = ['LinearRegression',
...
@@ -22,4 +23,5 @@ __all__ = ['LinearRegression',
'LogisticRegression'
,
'LogisticRegression'
,
'RandomForestRegressor'
,
'RandomForestRegressor'
,
'XGBRegressor'
,
'XGBRegressor'
,
'XGBClassifier'
,
'load_model'
]
'load_model'
]
\ No newline at end of file
alphamind/model/loader.py
View file @
e4487d31
...
@@ -12,6 +12,7 @@ from alphamind.model.linearmodel import LassoRegression
...
@@ -12,6 +12,7 @@ from alphamind.model.linearmodel import LassoRegression
from
alphamind.model.linearmodel
import
LogisticRegression
from
alphamind.model.linearmodel
import
LogisticRegression
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
def
load_model
(
model_desc
:
dict
)
->
ModelBase
:
def
load_model
(
model_desc
:
dict
)
->
ModelBase
:
...
@@ -31,5 +32,7 @@ def load_model(model_desc: dict) -> ModelBase:
...
@@ -31,5 +32,7 @@ def load_model(model_desc: dict) -> ModelBase:
return
RandomForestRegressor
.
load
(
model_desc
)
return
RandomForestRegressor
.
load
(
model_desc
)
elif
'XGBRegressor'
in
model_name_parts
:
elif
'XGBRegressor'
in
model_name_parts
:
return
XGBRegressor
.
load
(
model_desc
)
return
XGBRegressor
.
load
(
model_desc
)
elif
'XGBClassifier'
in
model_name_parts
:
return
XGBClassifier
.
load
(
model_desc
)
else
:
else
:
raise
ValueError
(
'{0} is not currently supported in model loader.'
.
format
(
model_name
))
raise
ValueError
(
'{0} is not currently supported in model loader.'
.
format
(
model_name
))
alphamind/model/treemodel.py
View file @
e4487d31
...
@@ -11,6 +11,7 @@ from sklearn import __version__ as sklearn_version
...
@@ -11,6 +11,7 @@ from sklearn import __version__ as sklearn_version
from
sklearn.ensemble
import
RandomForestRegressor
as
RandomForestRegressorImpl
from
sklearn.ensemble
import
RandomForestRegressor
as
RandomForestRegressorImpl
from
xgboost
import
__version__
as
xgbboot_version
from
xgboost
import
__version__
as
xgbboot_version
from
xgboost
import
XGBRegressor
as
XGBRegressorImpl
from
xgboost
import
XGBRegressor
as
XGBRegressorImpl
from
xgboost
import
XGBClassifier
as
XGBClassifierImpl
from
alphamind.model.modelbase
import
ModelBase
from
alphamind.model.modelbase
import
ModelBase
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
alpha_logger
...
@@ -49,7 +50,8 @@ class XGBRegressor(ModelBase):
...
@@ -49,7 +50,8 @@ class XGBRegressor(ModelBase):
n_estimators
:
int
=
100
,
n_estimators
:
int
=
100
,
learning_rate
:
float
=
0.1
,
learning_rate
:
float
=
0.1
,
max_depth
:
int
=
3
,
max_depth
:
int
=
3
,
features
:
List
=
None
,
**
kwargs
):
features
:
List
=
None
,
**
kwargs
):
super
()
.
__init__
(
features
)
super
()
.
__init__
(
features
)
self
.
impl
=
XGBRegressorImpl
(
n_estimators
=
n_estimators
,
self
.
impl
=
XGBRegressorImpl
(
n_estimators
=
n_estimators
,
learning_rate
=
learning_rate
,
learning_rate
=
learning_rate
,
...
@@ -77,5 +79,39 @@ class XGBRegressor(ModelBase):
...
@@ -77,5 +79,39 @@ class XGBRegressor(ModelBase):
return
self
.
impl
.
feature_importances_
.
tolist
()
return
self
.
impl
.
feature_importances_
.
tolist
()
class
XGBClassifier
(
ModelBase
):
def
__init__
(
self
,
n_estimators
:
int
=
100
,
learning_rate
:
float
=
0.1
,
max_depth
:
int
=
3
,
features
:
List
=
None
,
**
kwargs
):
super
()
.
__init__
(
features
)
self
.
impl
=
XGBClassifierImpl
(
n_estimators
=
n_estimators
,
learning_rate
=
learning_rate
,
max_depth
=
max_depth
,
**
kwargs
)
def
save
(
self
)
->
dict
:
model_desc
=
super
()
.
save
()
model_desc
[
'xgbboot_version'
]
=
xgbboot_version
model_desc
[
'importances'
]
=
self
.
importances
return
model_desc
@
classmethod
def
load
(
cls
,
model_desc
:
dict
):
obj_layout
=
super
()
.
load
(
model_desc
)
if
LooseVersion
(
sklearn_version
)
<
LooseVersion
(
model_desc
[
'xgbboot_version'
]):
alpha_logger
.
warning
(
'Current xgboost version {0} is lower than the model version {1}. '
'Loaded model may work incorrectly.'
.
format
(
xgbboot_version
,
model_desc
[
'xgbboot_version'
]))
return
obj_layout
@
property
def
importances
(
self
):
return
self
.
impl
.
feature_importances_
.
tolist
()
alphamind/tests/model/test_treemodel.py
View file @
e4487d31
...
@@ -10,6 +10,7 @@ import numpy as np
...
@@ -10,6 +10,7 @@ import numpy as np
from
alphamind.model.loader
import
load_model
from
alphamind.model.loader
import
load_model
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
RandomForestRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBRegressor
from
alphamind.model.treemodel
import
XGBClassifier
class
TestTreeModel
(
unittest
.
TestCase
):
class
TestTreeModel
(
unittest
.
TestCase
):
...
@@ -28,7 +29,7 @@ class TestTreeModel(unittest.TestCase):
...
@@ -28,7 +29,7 @@ class TestTreeModel(unittest.TestCase):
sample_x
=
np
.
random
.
randn
(
100
,
10
)
sample_x
=
np
.
random
.
randn
(
100
,
10
)
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
def
tes
_xgb_regress
(
self
):
def
tes
t_xgb_regress_persistence
(
self
):
model
=
XGBRegressor
(
features
=
list
(
range
(
10
)))
model
=
XGBRegressor
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
x
=
np
.
random
.
randn
(
1000
,
10
)
y
=
np
.
random
.
randn
(
1000
)
y
=
np
.
random
.
randn
(
1000
)
...
@@ -40,4 +41,19 @@ class TestTreeModel(unittest.TestCase):
...
@@ -40,4 +41,19 @@ class TestTreeModel(unittest.TestCase):
self
.
assertEqual
(
model
.
features
,
new_model
.
features
)
self
.
assertEqual
(
model
.
features
,
new_model
.
features
)
sample_x
=
np
.
random
.
randn
(
100
,
10
)
sample_x
=
np
.
random
.
randn
(
100
,
10
)
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
\ No newline at end of file
def
test_xgb_classify_persistence
(
self
):
model
=
XGBClassifier
(
features
=
list
(
range
(
10
)))
x
=
np
.
random
.
randn
(
1000
,
10
)
y
=
np
.
random
.
randn
(
1000
)
y
=
np
.
where
(
y
>
0
,
1
,
0
)
model
.
fit
(
x
,
y
)
desc
=
model
.
save
()
new_model
=
load_model
(
desc
)
self
.
assertEqual
(
model
.
features
,
new_model
.
features
)
sample_x
=
np
.
random
.
randn
(
100
,
10
)
np
.
testing
.
assert_array_almost_equal
(
model
.
predict
(
sample_x
),
new_model
.
predict
(
sample_x
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment