Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
e727e257
Commit
e727e257
authored
Sep 14, 2017
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added api only to get data from experimental
parent
0d63e509
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
47 additions
and
8 deletions
+47
-8
models.py
alphamind/data/dbmodel/models.py
+1
-1
sqlengine.py
alphamind/data/engines/sqlengine.py
+46
-7
No files found.
alphamind/data/dbmodel/models.py
View file @
e727e257
...
...
@@ -1752,5 +1752,5 @@ class Uqer(Base):
if
__name__
==
'__main__'
:
from
sqlalchemy
import
create_engine
engine
=
create_engine
(
'postgresql+psycopg2://postgres:we083826@1
01.132.104.118
/alpha'
)
engine
=
create_engine
(
'postgresql+psycopg2://postgres:we083826@1
92.168.0.102
/alpha'
)
Base
.
metadata
.
create_all
(
engine
)
alphamind/data/engines/sqlengine.py
View file @
e727e257
...
...
@@ -95,11 +95,11 @@ def _map_risk_model_table(risk_model: str) -> tuple:
raise
ValueError
(
"risk model name {0} is not recognized"
.
format
(
risk_model
))
def
_map_factors
(
factors
:
Iterable
[
str
])
->
Dict
:
def
_map_factors
(
factors
:
Iterable
[
str
]
,
used_factor_tables
)
->
Dict
:
factor_cols
=
{}
excluded
=
{
'trade_date'
,
'code'
,
'isOpen'
}
for
f
in
factors
:
for
t
in
factor_tables
:
for
t
in
used_
factor_tables
:
if
f
not
in
excluded
and
f
in
t
.
__table__
.
columns
:
factor_cols
[
t
.
__table__
.
columns
[
f
]]
=
t
break
...
...
@@ -115,7 +115,7 @@ def _map_industry_category(category: str) -> str:
class
SqlEngine
(
object
):
def
__init__
(
self
,
db_url
:
str
=
None
):
db_url
:
str
=
None
):
if
db_url
:
self
.
engine
=
sa
.
create_engine
(
db_url
)
else
:
...
...
@@ -228,7 +228,8 @@ class SqlEngine(object):
ref_date
:
str
,
factors
:
Iterable
[
object
],
codes
:
Iterable
[
int
],
warm_start
:
int
=
0
)
->
pd
.
DataFrame
:
warm_start
:
int
=
0
,
used_factor_tables
=
None
)
->
pd
.
DataFrame
:
if
isinstance
(
factors
,
Transformer
):
transformer
=
factors
...
...
@@ -237,7 +238,10 @@ class SqlEngine(object):
dependency
=
transformer
.
dependency
factor_cols
=
_map_factors
(
dependency
)
if
used_factor_tables
:
factor_cols
=
_map_factors
(
dependency
,
used_factor_tables
)
else
:
factor_cols
=
_map_factors
(
dependency
,
factor_tables
)
start_date
=
advanceDateByCalendar
(
'china.sse'
,
ref_date
,
str
(
-
warm_start
)
+
'b'
)
.
strftime
(
'
%
Y-
%
m-
%
d'
)
end_date
=
ref_date
...
...
@@ -249,7 +253,8 @@ class SqlEngine(object):
big_table
=
outerjoin
(
big_table
,
t
,
and_
(
FullFactorView
.
trade_date
==
t
.
trade_date
,
FullFactorView
.
code
==
t
.
code
))
query
=
select
([
FullFactorView
.
trade_date
,
FullFactorView
.
code
,
FullFactorView
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
query
=
select
(
[
FullFactorView
.
trade_date
,
FullFactorView
.
code
,
FullFactorView
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
.
select_from
(
big_table
)
.
where
(
and_
(
FullFactorView
.
trade_date
.
between
(
start_date
,
end_date
),
FullFactorView
.
code
.
in_
(
codes
)))
...
...
@@ -301,7 +306,8 @@ class SqlEngine(object):
FullFactorView
.
code
==
UniverseTable
.
code
,
cond
))
query
=
select
([
FullFactorView
.
trade_date
,
FullFactorView
.
code
,
FullFactorView
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
query
=
select
(
[
FullFactorView
.
trade_date
,
FullFactorView
.
code
,
FullFactorView
.
isOpen
]
+
list
(
factor_cols
.
keys
()))
\
.
select_from
(
big_table
)
df
=
pd
.
read_sql
(
query
,
self
.
engine
)
.
sort_values
([
'trade_date'
,
'code'
])
...
...
@@ -496,6 +502,39 @@ class SqlEngine(object):
total_data
[
'factor'
]
=
factor_data
return
total_data
def
fetch_data_experimental
(
self
,
ref_date
:
str
,
factors
:
Iterable
[
str
],
codes
:
Iterable
[
int
],
benchmark
:
int
=
None
,
risk_model
:
str
=
'short'
,
industry
:
str
=
'sw'
)
->
Dict
[
str
,
pd
.
DataFrame
]:
total_data
=
{}
transformer
=
Transformer
(
factors
)
factor_data
=
self
.
fetch_factor
(
ref_date
,
transformer
,
codes
,
[
Experimental
])
if
benchmark
:
benchmark_data
=
self
.
fetch_benchmark
(
ref_date
,
benchmark
)
total_data
[
'benchmark'
]
=
benchmark_data
factor_data
=
pd
.
merge
(
factor_data
,
benchmark_data
,
how
=
'left'
,
on
=
[
'code'
])
factor_data
[
'weight'
]
=
factor_data
[
'weight'
]
.
fillna
(
0.
)
if
risk_model
:
excluded
=
list
(
set
(
total_risk_factors
)
.
intersection
(
transformer
.
dependency
))
risk_cov
,
risk_exp
=
self
.
fetch_risk_model
(
ref_date
,
codes
,
risk_model
,
excluded
)
factor_data
=
pd
.
merge
(
factor_data
,
risk_exp
,
how
=
'left'
,
on
=
[
'code'
])
total_data
[
'risk_cov'
]
=
risk_cov
industry_info
=
self
.
fetch_industry
(
ref_date
=
ref_date
,
codes
=
codes
,
category
=
industry
)
factor_data
=
pd
.
merge
(
factor_data
,
industry_info
,
on
=
[
'code'
])
total_data
[
'factor'
]
=
factor_data
return
total_data
def
fetch_data_range
(
self
,
universe
:
Universe
,
factors
:
Iterable
[
str
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment