Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
f18521f6
Commit
f18521f6
authored
Feb 08, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
remove formula parameters from model base
parent
561e1046
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
15 additions
and
21 deletions
+15
-21
linearmodel.py
alphamind/model/linearmodel.py
+7
-8
modelbase.py
alphamind/model/modelbase.py
+3
-4
treemodel.py
alphamind/model/treemodel.py
+5
-9
No files found.
alphamind/model/linearmodel.py
View file @
f18521f6
...
@@ -32,9 +32,8 @@ class ConstLinearModel(ModelBase):
...
@@ -32,9 +32,8 @@ class ConstLinearModel(ModelBase):
def
__init__
(
self
,
def
__init__
(
self
,
features
:
list
=
None
,
features
:
list
=
None
,
formulas
:
dict
=
None
,
weights
:
np
.
ndarray
=
None
):
weights
:
np
.
ndarray
=
None
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
if
features
is
not
None
and
weights
is
not
None
:
if
features
is
not
None
and
weights
is
not
None
:
pyFinAssert
(
len
(
features
)
==
len
(
weights
),
pyFinAssert
(
len
(
features
)
==
len
(
weights
),
ValueError
,
ValueError
,
...
@@ -57,8 +56,8 @@ class ConstLinearModel(ModelBase):
...
@@ -57,8 +56,8 @@ class ConstLinearModel(ModelBase):
class
LinearRegression
(
ModelBase
):
class
LinearRegression
(
ModelBase
):
def
__init__
(
self
,
features
:
list
=
None
,
f
ormulas
:
dict
=
None
,
f
it_intercept
:
bool
=
False
,
**
kwargs
):
def
__init__
(
self
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
self
.
impl
=
LinearRegressionImpl
(
fit_intercept
=
fit_intercept
,
**
kwargs
)
self
.
impl
=
LinearRegressionImpl
(
fit_intercept
=
fit_intercept
,
**
kwargs
)
self
.
trained_time
=
None
self
.
trained_time
=
None
...
@@ -85,8 +84,8 @@ class LinearRegression(ModelBase):
...
@@ -85,8 +84,8 @@ class LinearRegression(ModelBase):
class
LassoRegression
(
ModelBase
):
class
LassoRegression
(
ModelBase
):
def
__init__
(
self
,
alpha
=
0.01
,
features
:
list
=
None
,
f
ormulas
:
dict
=
None
,
f
it_intercept
:
bool
=
False
,
**
kwargs
):
def
__init__
(
self
,
alpha
=
0.01
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
self
.
impl
=
Lasso
(
alpha
=
alpha
,
fit_intercept
=
fit_intercept
,
**
kwargs
)
self
.
impl
=
Lasso
(
alpha
=
alpha
,
fit_intercept
=
fit_intercept
,
**
kwargs
)
self
.
trained_time
=
None
self
.
trained_time
=
None
...
@@ -113,8 +112,8 @@ class LassoRegression(ModelBase):
...
@@ -113,8 +112,8 @@ class LassoRegression(ModelBase):
class
LogisticRegression
(
ModelBase
):
class
LogisticRegression
(
ModelBase
):
def
__init__
(
self
,
features
:
list
=
None
,
f
ormulas
:
dict
=
None
,
f
it_intercept
:
bool
=
False
,
**
kwargs
):
def
__init__
(
self
,
features
:
list
=
None
,
fit_intercept
:
bool
=
False
,
**
kwargs
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
self
.
impl
=
LogisticRegressionImpl
(
fit_intercept
=
fit_intercept
,
**
kwargs
)
self
.
impl
=
LogisticRegressionImpl
(
fit_intercept
=
fit_intercept
,
**
kwargs
)
def
save
(
self
)
->
dict
:
def
save
(
self
)
->
dict
:
...
...
alphamind/model/modelbase.py
View file @
f18521f6
...
@@ -6,7 +6,6 @@ Created on 2017-9-4
...
@@ -6,7 +6,6 @@ Created on 2017-9-4
"""
"""
import
abc
import
abc
import
copy
import
arrow
import
arrow
import
numpy
as
np
import
numpy
as
np
from
alphamind.utilities
import
alpha_logger
from
alphamind.utilities
import
alpha_logger
...
@@ -17,13 +16,13 @@ from alphamind.data.transformer import Transformer
...
@@ -17,13 +16,13 @@ from alphamind.data.transformer import Transformer
class
ModelBase
(
metaclass
=
abc
.
ABCMeta
):
class
ModelBase
(
metaclass
=
abc
.
ABCMeta
):
def
__init__
(
self
,
features
:
list
=
None
,
formulas
:
dict
=
None
):
def
__init__
(
self
,
features
:
list
=
None
):
if
features
is
not
None
:
if
features
is
not
None
:
self
.
features
=
Transformer
(
features
)
.
names
self
.
formulas
=
Transformer
(
features
)
self
.
features
=
self
.
formulas
.
names
else
:
else
:
self
.
features
=
None
self
.
features
=
None
self
.
impl
=
None
self
.
impl
=
None
self
.
formulas
=
copy
.
deepcopy
(
formulas
)
self
.
trained_time
=
None
self
.
trained_time
=
None
def
fit
(
self
,
x
:
np
.
ndarray
,
y
:
np
.
ndarray
):
def
fit
(
self
,
x
:
np
.
ndarray
,
y
:
np
.
ndarray
):
...
...
alphamind/model/treemodel.py
View file @
f18521f6
...
@@ -28,7 +28,7 @@ class RandomForestRegressor(ModelBase):
...
@@ -28,7 +28,7 @@ class RandomForestRegressor(ModelBase):
max_features
:
str
=
'auto'
,
max_features
:
str
=
'auto'
,
features
:
List
=
None
,
features
:
List
=
None
,
**
kwargs
):
**
kwargs
):
super
()
.
__init__
(
features
,
**
kwargs
)
super
()
.
__init__
(
features
)
self
.
impl
=
RandomForestRegressorImpl
(
n_estimators
=
n_estimators
,
self
.
impl
=
RandomForestRegressorImpl
(
n_estimators
=
n_estimators
,
max_features
=
max_features
,
max_features
=
max_features
,
**
kwargs
)
**
kwargs
)
...
@@ -61,9 +61,8 @@ class RandomForestClassifier(ModelBase):
...
@@ -61,9 +61,8 @@ class RandomForestClassifier(ModelBase):
n_estimators
:
int
=
100
,
n_estimators
:
int
=
100
,
max_features
:
str
=
'auto'
,
max_features
:
str
=
'auto'
,
features
:
List
=
None
,
features
:
List
=
None
,
formulas
:
dict
=
None
,
**
kwargs
):
**
kwargs
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
self
.
impl
=
RandomForestClassifierImpl
(
n_estimators
=
n_estimators
,
self
.
impl
=
RandomForestClassifierImpl
(
n_estimators
=
n_estimators
,
max_features
=
max_features
,
max_features
=
max_features
,
**
kwargs
)
**
kwargs
)
...
@@ -97,10 +96,9 @@ class XGBRegressor(ModelBase):
...
@@ -97,10 +96,9 @@ class XGBRegressor(ModelBase):
learning_rate
:
float
=
0.1
,
learning_rate
:
float
=
0.1
,
max_depth
:
int
=
3
,
max_depth
:
int
=
3
,
features
:
List
=
None
,
features
:
List
=
None
,
formulas
:
dict
=
None
,
n_jobs
:
int
=
1
,
n_jobs
:
int
=
1
,
**
kwargs
):
**
kwargs
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
self
.
impl
=
XGBRegressorImpl
(
n_estimators
=
n_estimators
,
self
.
impl
=
XGBRegressorImpl
(
n_estimators
=
n_estimators
,
learning_rate
=
learning_rate
,
learning_rate
=
learning_rate
,
max_depth
=
max_depth
,
max_depth
=
max_depth
,
...
@@ -135,10 +133,9 @@ class XGBClassifier(ModelBase):
...
@@ -135,10 +133,9 @@ class XGBClassifier(ModelBase):
learning_rate
:
float
=
0.1
,
learning_rate
:
float
=
0.1
,
max_depth
:
int
=
3
,
max_depth
:
int
=
3
,
features
:
List
=
None
,
features
:
List
=
None
,
formulas
:
dict
=
None
,
n_jobs
:
int
=
1
,
n_jobs
:
int
=
1
,
**
kwargs
):
**
kwargs
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
self
.
impl
=
XGBClassifierImpl
(
n_estimators
=
n_estimators
,
self
.
impl
=
XGBClassifierImpl
(
n_estimators
=
n_estimators
,
learning_rate
=
learning_rate
,
learning_rate
=
learning_rate
,
max_depth
=
max_depth
,
max_depth
=
max_depth
,
...
@@ -180,11 +177,10 @@ class XGBTrainer(ModelBase):
...
@@ -180,11 +177,10 @@ class XGBTrainer(ModelBase):
subsample
=
1.
,
subsample
=
1.
,
colsample_bytree
=
1.
,
colsample_bytree
=
1.
,
features
:
List
=
None
,
features
:
List
=
None
,
formulas
:
dict
=
None
,
random_state
:
int
=
0
,
random_state
:
int
=
0
,
n_jobs
:
int
=
1
,
n_jobs
:
int
=
1
,
**
kwargs
):
**
kwargs
):
super
()
.
__init__
(
features
,
formulas
=
formulas
)
super
()
.
__init__
(
features
)
self
.
params
=
{
self
.
params
=
{
'silent'
:
1
,
'silent'
:
1
,
'objective'
:
objective
,
'objective'
:
objective
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment