Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
A
alpha-mind
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dr.李
alpha-mind
Commits
fd8a9b2c
Commit
fd8a9b2c
authored
May 30, 2018
by
Dr.李
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update example
parent
18a6bd84
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
49 additions
and
16 deletions
+49
-16
Example 7 - Portfolio Optimizer Performance.ipynb
notebooks/Example 7 - Portfolio Optimizer Performance.ipynb
+49
-16
No files found.
notebooks/Example 7 - Portfolio Optimizer Performance.ipynb
View file @
fd8a9b2c
...
@@ -28,9 +28,6 @@
...
@@ -28,9 +28,6 @@
"import numpy as np\n",
"import numpy as np\n",
"import pandas as pd\n",
"import pandas as pd\n",
"import cvxpy\n",
"import cvxpy\n",
"from cvxopt import solvers\n",
"from scipy.optimize import linprog\n",
"from scipy.optimize import minimize\n",
"from alphamind.api import *\n",
"from alphamind.api import *\n",
"from alphamind.portfolio.linearbuilder import linear_builder\n",
"from alphamind.portfolio.linearbuilder import linear_builder\n",
"from alphamind.portfolio.meanvariancebuilder import mean_variance_builder\n",
"from alphamind.portfolio.meanvariancebuilder import mean_variance_builder\n",
...
@@ -102,9 +99,8 @@
...
@@ -102,9 +99,8 @@
" A_eq = risk_constraints.T\n",
" A_eq = risk_constraints.T\n",
" b_eq = np.array([1.])\n",
" b_eq = np.array([1.])\n",
" \n",
" \n",
" solvers.options['glpk'] = {'msg_lev': 'GLP_MSG_OFF'}\n",
" w = cvxpy.Variable(n)\n",
" w = cvxpy.Variable(n)\n",
" curr_risk_exposure =
risk_constraints.T @ w
\n",
" curr_risk_exposure =
w * risk_constraints
\n",
" \n",
" \n",
" constraints = [w >= lbound,\n",
" constraints = [w >= lbound,\n",
" w <= ubound,\n",
" w <= ubound,\n",
...
@@ -113,8 +109,8 @@
...
@@ -113,8 +109,8 @@
" objective = cvxpy.Minimize(-w.T * er)\n",
" objective = cvxpy.Minimize(-w.T * er)\n",
" prob = cvxpy.Problem(objective, constraints)\n",
" prob = cvxpy.Problem(objective, constraints)\n",
" \n",
" \n",
" prob.solve()\n",
" prob.solve(
solver='ECOS'
)\n",
" elasped_time2 = timeit.timeit(\"prob.solve()\",\n",
" elasped_time2 = timeit.timeit(\"prob.solve(
solver='ECOS'
)\",\n",
" number=number, globals=globals()) / number * 1000\n",
" number=number, globals=globals()) / number * 1000\n",
"\n",
"\n",
" np.testing.assert_almost_equal(x1 @ er, np.array(w.value).flatten() @ er, 4)\n",
" np.testing.assert_almost_equal(x1 @ er, np.array(w.value).flatten() @ er, 4)\n",
...
@@ -133,6 +129,15 @@
...
@@ -133,6 +129,15 @@
"df"
"df"
]
]
},
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prob.value"
]
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
...
@@ -149,7 +154,7 @@
...
@@ -149,7 +154,7 @@
"source": [
"source": [
"from cvxpy import pnorm\n",
"from cvxpy import pnorm\n",
"\n",
"\n",
"df = pd.DataFrame(columns=u_names, index=['cvxpy', 'alphamind (
simplex)', 'alphamind (interior
)'])\n",
"df = pd.DataFrame(columns=u_names, index=['cvxpy', 'alphamind (
clp simplex)', 'alphamind (clp interior)', 'alphamind (ecos
)'])\n",
"turn_over_target = 0.5\n",
"turn_over_target = 0.5\n",
"number = 1\n",
"number = 1\n",
"\n",
"\n",
...
@@ -196,10 +201,18 @@
...
@@ -196,10 +201,18 @@
" objective = cvxpy.Minimize(-w.T * er)\n",
" objective = cvxpy.Minimize(-w.T * er)\n",
" prob = cvxpy.Problem(objective, constraints)\n",
" prob = cvxpy.Problem(objective, constraints)\n",
" \n",
" \n",
" prob.solve()\n",
" prob.solve(
solver='ECOS'
)\n",
" elasped_time2 = timeit.timeit(\"prob.solve()\",\n",
" elasped_time2 = timeit.timeit(\"prob.solve(
solver='ECOS'
)\",\n",
" number=number, globals=globals()) / number * 1000\n",
" number=number, globals=globals()) / number * 1000\n",
" \n",
" \n",
" status, y, x2 = linear_builder(er,\n",
" lbound,\n",
" ubound,\n",
" risk_constraints,\n",
" risk_target,\n",
" turn_over_target=turn_over_target,\n",
" current_position=current_position,\n",
" method='simplex')\n",
" elasped_time3 = timeit.timeit(\"\"\"linear_builder(er,\n",
" elasped_time3 = timeit.timeit(\"\"\"linear_builder(er,\n",
" lbound,\n",
" lbound,\n",
" ubound,\n",
" ubound,\n",
...
@@ -209,11 +222,31 @@
...
@@ -209,11 +222,31 @@
" current_position=current_position,\n",
" current_position=current_position,\n",
" method='simplex')\"\"\", number=number, globals=globals()) / number * 1000\n",
" method='simplex')\"\"\", number=number, globals=globals()) / number * 1000\n",
" \n",
" \n",
" status, y, x3 = linear_builder(er,\n",
" lbound,\n",
" ubound,\n",
" risk_constraints,\n",
" risk_target,\n",
" turn_over_target=turn_over_target,\n",
" current_position=current_position,\n",
" method='ecos')\n",
" elasped_time4 = timeit.timeit(\"\"\"linear_builder(er,\n",
" lbound,\n",
" ubound,\n",
" risk_constraints,\n",
" risk_target,\n",
" turn_over_target=turn_over_target,\n",
" current_position=current_position,\n",
" method='ecos')\"\"\", number=number, globals=globals()) / number * 1000\n",
" \n",
" \n",
" \n",
" np.testing.assert_almost_equal(x1 @ er, np.array(w.value).flatten() @ er, 4)\n",
" np.testing.assert_almost_equal(x1 @ er, np.array(w.value).flatten() @ er, 4)\n",
" np.testing.assert_almost_equal(x2 @ er, np.array(w.value).flatten() @ er, 4)\n",
" np.testing.assert_almost_equal(x3 @ er, np.array(w.value).flatten() @ er, 4)\n",
"\n",
"\n",
" df.loc['alphamind (interior)', u_name] = elasped_time1\n",
" df.loc['alphamind (clp interior)', u_name] = elasped_time1\n",
" df.loc['alphamind (simplex)', u_name] = elasped_time3\n",
" df.loc['alphamind (clp simplex)', u_name] = elasped_time3\n",
" df.loc['alphamind (ecos)', u_name] = elasped_time4\n",
" df.loc['cvxpy', u_name] = elasped_time2\n",
" df.loc['cvxpy', u_name] = elasped_time2\n",
" alpha_logger.info(f\"{u_name} is finished\")"
" alpha_logger.info(f\"{u_name} is finished\")"
]
]
...
@@ -282,7 +315,7 @@
...
@@ -282,7 +315,7 @@
" number=number, globals=globals()) / number * 1000\n",
" number=number, globals=globals()) / number * 1000\n",
" \n",
" \n",
" w = cvxpy.Variable(n)\n",
" w = cvxpy.Variable(n)\n",
" risk = sum_squares(mul
_elemwise
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" risk = sum_squares(mul
tiply
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" objective = cvxpy.Minimize(-w.T * er + 0.5 * risk)\n",
" objective = cvxpy.Minimize(-w.T * er + 0.5 * risk)\n",
" prob = cvxpy.Problem(objective)\n",
" prob = cvxpy.Problem(objective)\n",
" prob.solve(solver='ECOS')\n",
" prob.solve(solver='ECOS')\n",
...
@@ -359,7 +392,7 @@
...
@@ -359,7 +392,7 @@
" number=number, globals=globals()) / number * 1000\n",
" number=number, globals=globals()) / number * 1000\n",
" \n",
" \n",
" w = cvxpy.Variable(n)\n",
" w = cvxpy.Variable(n)\n",
" risk = sum_squares(mul
_elemwise
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" risk = sum_squares(mul
tiply
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" objective = cvxpy.Minimize(-w.T * er + 0.5 * risk)\n",
" objective = cvxpy.Minimize(-w.T * er + 0.5 * risk)\n",
" constraints = [w >= lbound,\n",
" constraints = [w >= lbound,\n",
" w <= ubound]\n",
" w <= ubound]\n",
...
@@ -441,7 +474,7 @@
...
@@ -441,7 +474,7 @@
" number=number, globals=globals()) / number * 1000\n",
" number=number, globals=globals()) / number * 1000\n",
" \n",
" \n",
" w = cvxpy.Variable(n)\n",
" w = cvxpy.Variable(n)\n",
" risk = sum_squares(mul
_elemwise
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" risk = sum_squares(mul
tiply
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" objective = cvxpy.Minimize(-w.T * er + 0.5 * risk)\n",
" objective = cvxpy.Minimize(-w.T * er + 0.5 * risk)\n",
" curr_risk_exposure = risk_constraints.T @ w\n",
" curr_risk_exposure = risk_constraints.T @ w\n",
" constraints = [w >= lbound,\n",
" constraints = [w >= lbound,\n",
...
@@ -531,7 +564,7 @@
...
@@ -531,7 +564,7 @@
" number=number, globals=globals()) / number * 1000\n",
" number=number, globals=globals()) / number * 1000\n",
" \n",
" \n",
" w = cvxpy.Variable(n)\n",
" w = cvxpy.Variable(n)\n",
" risk = sum_squares(mul
_elemwise
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" risk = sum_squares(mul
tiply
(special_risk / 100., w)) + quad_form((w.T * risk_exposure).T, risk_cov / 10000.)\n",
" objective = cvxpy.Minimize(-w.T * er)\n",
" objective = cvxpy.Minimize(-w.T * er)\n",
" curr_risk_exposure = risk_constraints.T @ w\n",
" curr_risk_exposure = risk_constraints.T @ w\n",
" constraints = [w >= lbound,\n",
" constraints = [w >= lbound,\n",
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment